Calculus II Final Exam Practice Problems

1. (a) Sketch the conic section. Find and label any foci, vertices, and asymptotes.

$$(x-3)^2 - 9y^2 = 36$$

- (b) Find the equation of the ellipse with foci $(0,\pm 2)$ and semi-major axis length 3.
- 2. (a) Find the area of one petal of the rose $r = 4\sin(3\theta)$.
 - (b) Find the arc length of the Archimedian spiral $r = 2\theta$, from $\theta = 0$ to $\theta = \pi/2$.
- 3. Use the formula $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots$ for |x| < 1 to find the number of terms N such that the difference between the Nth partial sum S_N estimating $\ln(1.1)$ is less than 10^{-2} .
- 4. Find the Taylor series about $x_0 = \pi/4$ for $f(x) = \sin(x)$.
- 5. Find the radius of convergence and interval of convergence for

(a)
$$\sum_{k=1}^{\infty} \frac{(x-1)^k}{k!}$$
 (b) $\sum_{k=1}^{\infty} 3 \cdot 2^k \cdot x^k$

- 6. Classify each series as absolutely convergent, conditionally convergent, or divergent. Show your work. (You can use any method you do not have to use the hints.)
 - (a) $\sum_{k=1}^{\infty} \left(\frac{\ln(k)}{k+2} \right)^k$ (hint: root test)
 - (b) $\sum_{k=1}^{\infty} \frac{3}{2k^{1.5} 1}$ (hint: comparison or limit comparison test)
 - (c) $\sum_{k=1}^{\infty} \frac{3^{2k}}{3k!}$ (hint: ratio test)
 - (d) $\sum_{k=1}^{\infty} \frac{2k}{(k^2+1)^3}$ (hint: integral test with substitution u=k² + 1)
 - (e) $\sum_{k=1}^{\infty} \frac{(-1)^k k}{(k+1)}$ (hint: divergence test)
 - (f) $\sum_{k=1}^{\infty} \frac{2}{\sqrt[5]{k^3 + 1}}$ (hint: limit comparison with a p-series)
- 7. Write out the first five terms of the sequence, determine whether the sequence converges, and if so find its limit.
 - (a) $\left\{\frac{2n+3}{7n+1}\right\}_{n=1}^{\infty}$
 - (b) $\left\{\frac{n+3}{n^2+1}\right\}_{n=1}^{\infty}$
- 8. Find the sum of each series.

(a)
$$\sum_{k=1}^{\infty} \frac{1}{(k+2)(k+3)}$$
 (Hint: Telescoping)

(b)
$$\sum_{k=1}^{\infty} \frac{5}{3 \cdot 2^k}$$
 (Hint: Geometric)

9. Find the arc length of the curve $y = x^{3/2}$ from x=1 to x=4.

- 10. Find the exact area of the surface generated when $y = 2x^{1/2}$ from x = 1 to x = 4 is revolved about the x-axis.
- 11. The lamina below is submerged vertically in water (of weight density 62.5 lb/ft³). Find the fluid force against it.

12. Evaluate the integrals. Show your work.

(a)
$$\int \frac{x^2}{\sqrt{4-x^2}} dx$$
 (Hint: Trig. substitution.)

(b)
$$\int_{1}^{\infty} \frac{1}{1+t^2} dt$$
 (Hint: Derivative of tan⁻¹t)

(c)
$$\int_{\pi/4}^{\pi/2} \tan^3(2x) \sec^3(2x) dx$$

(d)
$$\int_0^{\pi} \sqrt{1 + \cos(x)} \, dx$$
 (Hint: Half-angle identity.)

(e)
$$\int \frac{\ln(x)}{x} dx$$
 (Hint: Integration by parts.)

(f)
$$\int x^2 e^x dx$$
 (Hint: Two integrations by parts.)

(g)
$$\int x \sinh(x^2) dx$$
 (Hint: Substitution.)

(h)
$$\int \frac{2x^2}{x^2 - 4x + 3} dx$$
 (Hint: Polynomial division and partial fractions.)

13. Solve the differential equation and apply the stated initial value.

$$(y-1)^2 \frac{dy}{dt} = -2t$$
 , $y(0) = 2$

.

Answers

1. a.

Vertices: (-3,0), (9,0), Foci: $(3-2\sqrt{10},0)$, $(3+2\sqrt{10},0)$, Asymptotes: $y=\pm\frac{1}{2}(x-3)$

b.
$$\left(\frac{y}{3}\right)^2 + \left(\frac{x}{\sqrt{5}}\right)^2 = 1$$

2. a.
$$4\pi/3$$
 b. $\frac{\pi\sqrt{\pi^2+4}}{4} + \ln\left(\frac{\pi}{2} + \sqrt{\frac{\pi^2}{4}+1}\right)$

3. 1 (The alternating series error theorem says that the error is no more than the absolute value of the next term: $|-(.1)^2/2| = .005$.)

4.
$$\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\frac{\sqrt{2}}{2!}}{2!} \left(x - \frac{\pi}{4} \right)^2 - \frac{\frac{\sqrt{2}}{2}}{3!} \left(x - \frac{\pi}{4} \right)^3 + \frac{\frac{\sqrt{2}}{2!}}{4!} \left(x - \frac{\pi}{4} \right)^4 + \frac{\frac{\sqrt{2}}{2!}}{5!} \left(x - \frac{\pi}{4} \right)^5 - \dots$$

5. a.
$$R = \infty$$
, $(-\infty,\infty)$ b. $R = \frac{1}{2}$, $(-\frac{1}{2}, \frac{1}{2})$

a. Converges absolutely b. Converges absolutely

c. Converges absolutely

d. Converges absolutely e. Diverges f. Diverges

b. 0

b. 5/3

9.
$$\frac{8}{27} \left(10^{3/2} - \frac{13^{3/2}}{8} \right)$$

10.
$$\int_{1}^{4} 2\pi \cdot 2\sqrt{x} \sqrt{1 + (1/\sqrt{x})^{2}} dx = 4\pi \int_{1}^{4} \sqrt{x + 1} dx = 4\pi \int_{2}^{5} \sqrt{u} du = \frac{8\pi (5^{3/2} - 2^{3/2})}{3}$$

1,125 lb. 11.

12.

d.
$$2\sqrt{2}$$

g.
$$\frac{1}{2}\cosh(x^2) + C$$

a. $2\sin^{-1}(x/2) - \sin(2\sin^{-1}(x/2)) + C$ b. $\pi/4$ c. Diverges d. $2\sqrt{2}$ e. $(\ln(x))^2/2 + C$ f. $x^2e^x - 2xe^x + 2e^x + C$ g. $\frac{1}{2}\cosh(x^2) + C$ h. $4\ln|x^2 - 4x + 3| - 5\ln|x - 1| + 5\ln|x - 3| + 2x + C$

13.
$$y = 1 + \sqrt[3]{1 - 3t^2}$$