

"...the direct method may be used...but indirect methods will be needed in order to secure victory...."

"The direct and the indirect lead on to each other in turn. It is like moving in a circle...."

Who can exhaust the possibilities of their

no can exnaust the possibilities of their combination?"

Sun Tzu, The Art of War

John Ellis

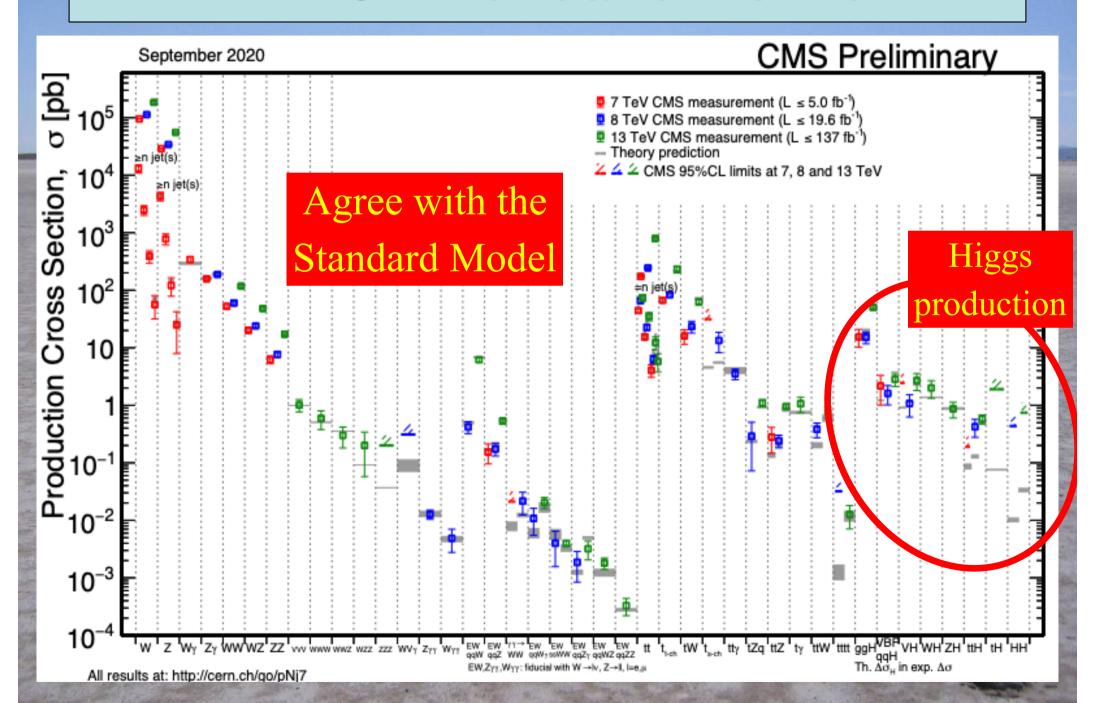
Where are we?

Summary of the Standard Model

• Particles and $SU(3) \times SU(2) \times U(1)$ quantum numbers:

$$\begin{bmatrix} L_L & \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L, \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L & (\mathbf{1}, \mathbf{2}, -1) \\ e_R^-, \mu_R^-, \tau_R^- & (\mathbf{1}, \mathbf{1}, -2) & (\mathbf{1}$$

• Lagrangian:

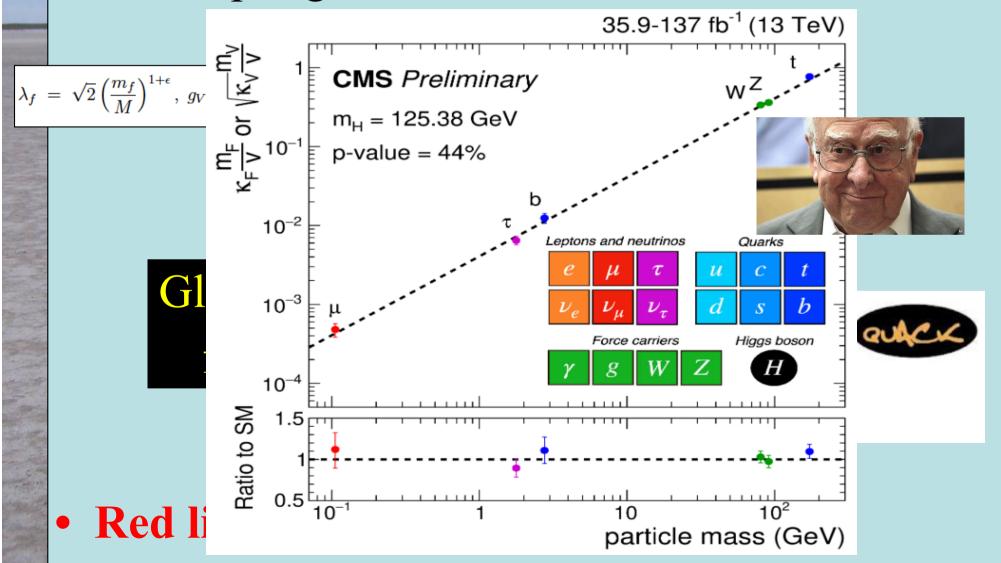

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^{a} F^{a \mu\nu} + i \bar{\psi} D\psi + h.c. + \psi_{i} y_{ij} \psi_{j} \phi + h.c. + |D_{\mu} \phi|^{2} - V(\phi)$$

gauge interactions
matter fermions
Yukawa interactions
Higgs potential

Tested < 0.1% before LHC

Testing now in progress

LHC Measurements


The Particle Higgsaw Puzzle

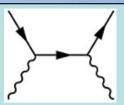


Is it the right size?

It Walks and Quacks like a Higgs

• Do couplings scale \sim mass? With scale = v?

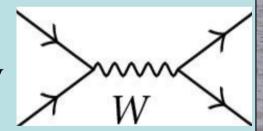
Everything about Higgs is Puzzling

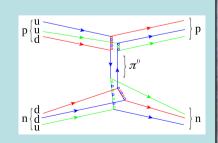

$$\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0 + \dots$$

- Pattern of Yukawa couplings y:
 - Flavour problem
- Magnitude of mass term μ:
 - Naturalness/hierarchy problem
- Magnitude of quartic coupling λ:
 - Stability of electroweak vacuum
- Cosmological constant term V_0 :
 - Dark energy

Higher-dimensional interactions?

Effective Field Theories (EFTs) a long and glorious History


• 1930's: "Standard Model" of QED had d=4


• Fermi's four-fermion theory of the weak force

- Due to exchanges of massive particles?
- V-A → massive vector bosons → gauge theory

- Yukawa's meson theory of the strong N-N force
 - Due to exchanges of mesons? → pions

• Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

Standard Model Effective Field Theory a more powerful way to analyze the data

- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other data
- Model-independent way to look for physics beyond the Standard Model (BSM)

Summarize Analysis Framework

• Include all leading dimension-6 operators?

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

- Simplify by assuming $SU(3)^5$ or $SU(2)^2 \times SU(3)^3$ symmetry for fermions
- Work to linear order in operator coefficients
- Use G_F , M_Z , α as input parameters

Dimension-6 Operators in Detail

- Including 2- and 4- fermion operators
- Various colours for different data sectors
- Grey cells violate SU(3)⁵ symmetry
- Important when including top observables

	X^3		H^6 and H^4D^2	$\psi^2 H^3$			
\mathcal{O}_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{\scriptscriptstyle H}$	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$		
$\mathcal{O}_{ ilde{G}}$	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$\mathcal{O}_{{\scriptscriptstyle H}\square}$	$(H^\dagger H)\Box (H^\dagger H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$		
\mathcal{O}_W	$\varepsilon^{IJK}W_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$	$\mathcal{O}_{\scriptscriptstyle HD}$	$\left(H^\dagger D^\mu H\right)^\star \left(H^\dagger D_\mu H\right)$	\mathcal{O}_{dH}	$(H^\dagger H)(ar q_p d_r H)$		
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$						
	X^2H^2		$\psi^2 X H$	$\psi^2 H^2 D$			
\mathcal{O}_{HG}	$H^\dagger H G^A_{\mu u} G^{A \mu u}$	\mathcal{O}_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$		
$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	\mathcal{O}_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$\mathcal{O}_{Hl}^{(3)}$	$(H^{\dagger}i\overset{\stackrel{\frown}{D_{\mu}}}{D_{\mu}}H)(\bar{l}_p\tau^I\gamma^{\mu}l_r)$		
$\mathcal{O}_{\scriptscriptstyle HW}$	$H^\dagger H W^I_{\mu u} W^{I \mu u}$	\mathcal{O}_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	$\mathcal{O}_{{\scriptscriptstyle H}e}$	$(H^{\dagger}i\tilde{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i\overrightarrow{D}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r})$		
$\mathcal{O}_{\scriptscriptstyle HB}$	$H^\dagger H B_{\mu u} B^{\mu u}$	\mathcal{O}_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$\mathcal{O}_{Hq}^{(3)}$	$(H^{\dagger}iD_{\underline{\mu}}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$\mathcal{O}_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	$\mathcal{O}_{{\scriptscriptstyle H}{\scriptscriptstyle u}}$	$(H^{\dagger}i\overset{\smile}{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$		
\mathcal{O}_{HWB}	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	\mathcal{O}_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	\mathcal{O}_{Hd}	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger} \tau^I H W^I_{\mu\nu} B^{\mu\nu}$	\mathcal{O}_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	\mathcal{O}_{Hud}	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$		
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
\mathcal{O}_{ii}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$		
$\mathcal{O}_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	O_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$		
$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$		
$\mathcal{O}_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	${\cal O}_{eu}$	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$		
$\mathcal{O}_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$		
		$\mathcal{O}_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $		
		$\mathcal{O}_{ud}^{(8)}$	$\left[(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \right]$	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$		
				$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-vio	lating			
\mathcal{O}_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	\mathcal{O}_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$				
$\mathcal{O}_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	\mathcal{O}_{qqu}	$\left[arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^TCq_r^{eta k} ight] \left[(u_s^{\gamma})^TCe_t ight]$				
$\mathcal{O}_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	\mathcal{O}_{qqq}	$\left[arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^{lpha j})^TCq_r^{eta k} ight] \left[(q_s^{\gamma m})^TCl_t^n ight]$				
$\mathcal{O}_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	\mathcal{O}_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha) ight.$	TCu_r^{β}	$(u_s^{\gamma})^T C e_t$		
$\mathcal{O}_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$		·				

Operators included in Global Fit

• Operators in flavour-universal SU(3)⁵ fit

EWPO: \mathcal{O}_{HWB} , \mathcal{O}_{HD} , \mathcal{O}_{ll} , $\mathcal{O}_{Hl}^{(3)}$, $\mathcal{O}_{Hl}^{(1)}$, \mathcal{O}_{He} , $\mathcal{O}_{Hq}^{(3)}$, $\mathcal{O}_{Hq}^{(1)}$, \mathcal{O}_{Hd} , \mathcal{O}_{Hu} ,

Bosonic: $\left[\mathcal{O}_{H\square}, \mathcal{O}_{HG}, \mathcal{O}_{HW}, \mathcal{O}_{HB}, \mathcal{O}_{W}, \mathcal{O}_{G} \right]$

Yukawa: $\mathcal{O}_{\tau H}$, $\mathcal{O}_{\mu H}$, \mathcal{O}_{bH} , \mathcal{O}_{tH} .

Indicating which sectors constrain which operators

• Operators in top-specific $SU(2)^2 \times SU(3)^3$ fit

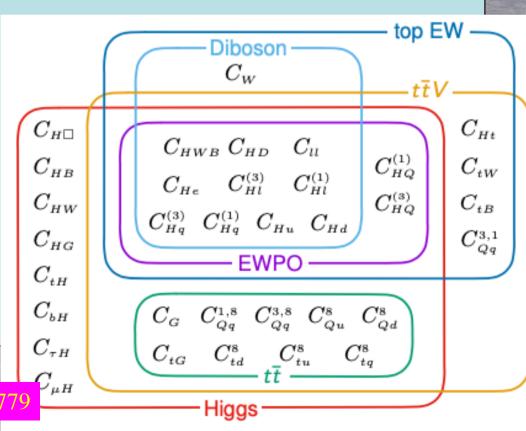
EWPO: \mathcal{O}_{HWB} , \mathcal{O}_{HD} , \mathcal{O}_{ll} , $\mathcal{O}_{Hl}^{(3)}$, $\mathcal{O}_{Hl}^{(1)}$, \mathcal{O}_{He} , $\mathcal{O}_{Hq}^{(3)}$, $\mathcal{O}_{Hq}^{(1)}$, \mathcal{O}_{Hd} , \mathcal{O}_{Hu} ,

Bosonic: $\mathcal{O}_{H\square}$, \mathcal{O}_{HG} , \mathcal{O}_{HW} , \mathcal{O}_{HB} , \mathcal{O}_{W} , \mathcal{O}_{G} ,

Yukawa: $\mathcal{O}_{\tau H}$, $\mathcal{O}_{\mu H}$, \mathcal{O}_{bH} , \mathcal{O}_{tH} ,

Top 2F: $\mathcal{O}_{HQ}^{(3)}$, $\mathcal{O}_{HQ}^{(1)}$, \mathcal{O}_{Ht} , \mathcal{O}_{tG} , \mathcal{O}_{tW} , \mathcal{O}_{tB} ,

Top 4F: $\mathcal{O}_{Qq}^{3,1}$, $\mathcal{O}_{Qq}^{3,8}$, $\mathcal{O}_{Qq}^{1,8}$, \mathcal{O}_{Qu}^{8} , \mathcal{O}_{Qd}^{8} , \mathcal{O}_{tQ}^{8} , \mathcal{O}_{tu}^{8} , \mathcal{O}_{td}^{8} . (2.12)

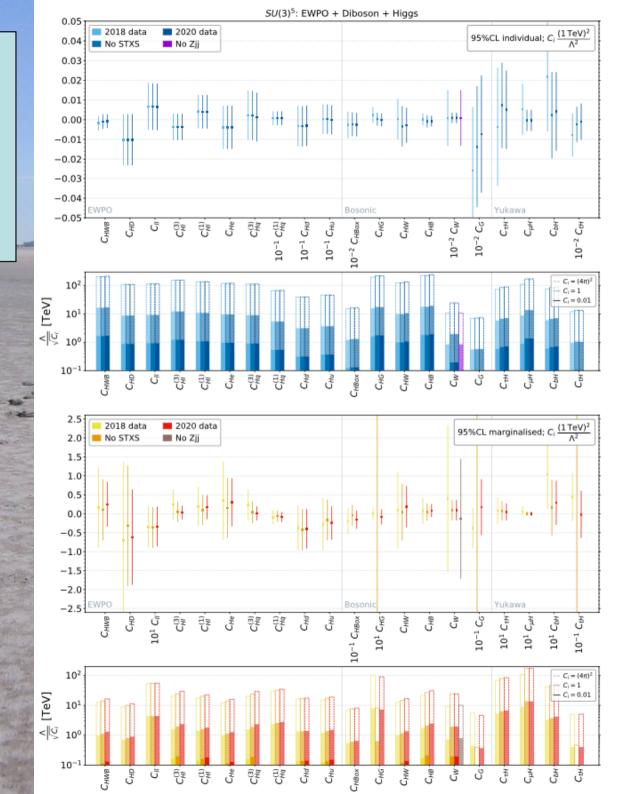

Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

• Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs

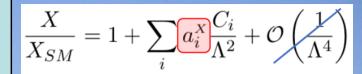
1 and 2

Constraints on BSM

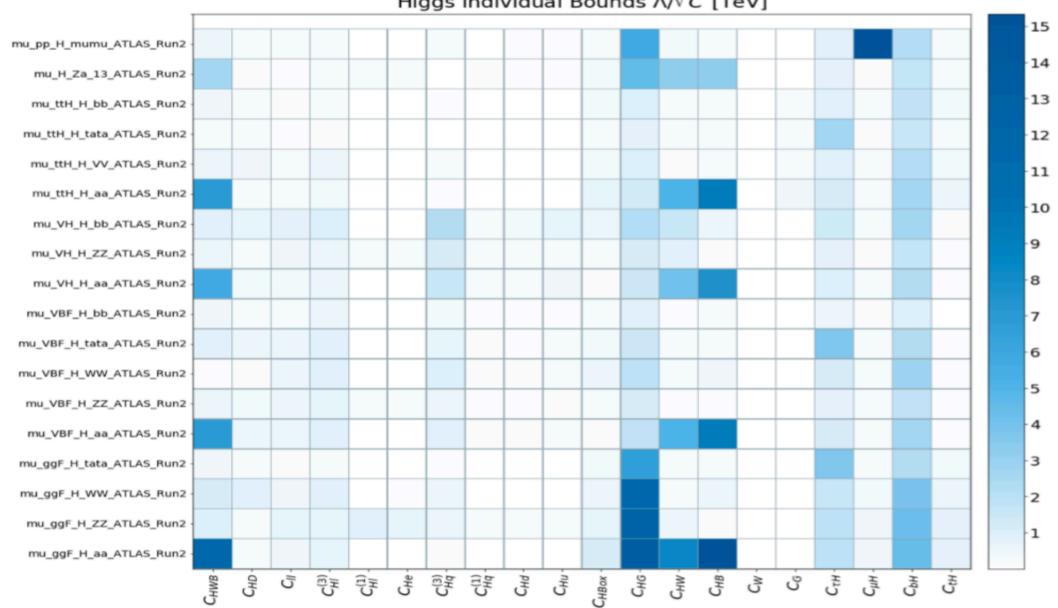
- At tree level
- At loop level


JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

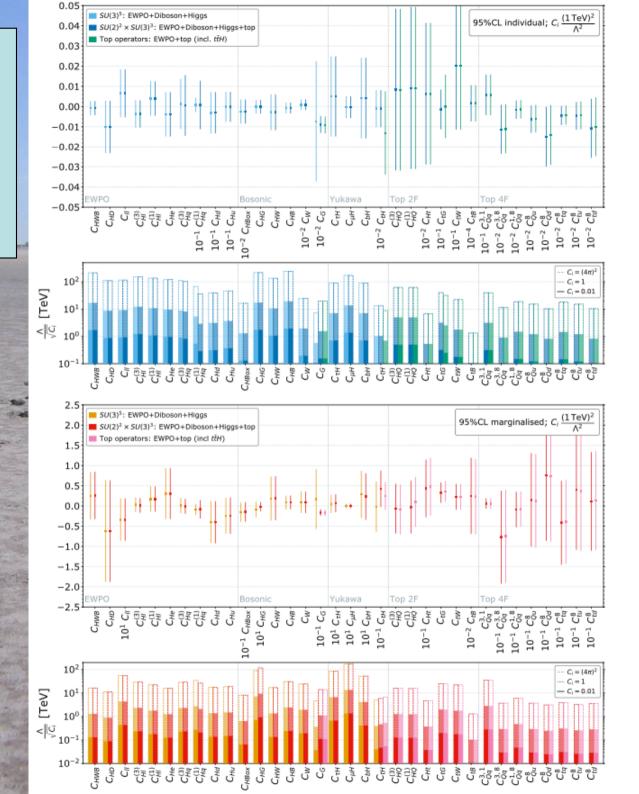
Data included in Global Fit


	EW precision observables									
	Precision electroweak measurem	LHC Run 2 Higgs	Tevatron & Run 1 top nobs	Ref.						
	Γ_Z , $\sigma_{\rm had.}^0$, R_ℓ^0 , A_{FB}^ℓ , $A_\ell({\rm SLD})$, A	ATLAS combination	Tevatron combination of differential tt forward-backward asymmetry, 4	[7]						
	Combination of CDF and D0 W	including ratios of bra								
	LHC run 1 W boson mass measu	Signal strengths coars	ATLA Run 2 top	$n_{\mathbf{obs}}$	Ref.					
	Effectual 1 w boson mass meast	CMS LHC combination	$\frac{\overline{dm_{t\bar{t}}}}{ATLA}$ CMS $t\bar{t}$ differential distributions in the dilepton channel.	6	[36,					
	Diboson LEP & LHC	Production: ggF , VB	$\frac{d\sigma}{dm_{t\bar{t}}}$	40	231]					
	W ⁺ W [−] angular distribution me	Decay: $\gamma \gamma$, ZZ , $W^+ W$	CMS $t\bar{t}$ differential distributions in the ℓ +jets channel.	10	[37]					
	W^+W^- total cross section meas	CMS stage 1.0 STXS	$\frac{d\sigma}{dm_{t\bar{t}}}$ CMS ATLAS measurement of differential $t\bar{t}$ charge asymmetry, $A_C(m_{t\bar{t}})$.	5	[38]					
	final states for 8 energies	13 parameter fit 7 pa	CMS: ATLAS measurement of differential tt charge asymmetry, $A_C(m_{t\bar{t}})$. dilepte ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[39]					
	W^+W^- total cross section meas	CMS stage 1.0 STXS	ATLA CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	1 1	[40]					
8	qqqq final states for 7 energies	CMS stage 1.1 STXS	dilepte CMS $t\bar{t}Z$ differential distributions.	4 4	[41]					
	W^+W^- total cross section meas	CMS differential cross	$ATLA \atop A_G(m) = \frac{d\sigma}{dp_Z^T} = \frac{d\sigma}{d\cos\theta^*}$	_	' '					
	&~qqqq final states for 8 energies	tion in the $WW^* \to \ell$	$A_C(m)$ dp_Z^t $d\cos\theta^2$ CMS measurement of differential cross sections and charge ratios for t -	5 5	[42]					
100	ATLAS W^+W^- differential cro	$\frac{d\sigma}{dn_{\text{jet}}}$ $\frac{d\sigma}{dp_H^T}$	$\frac{d\sigma}{dm_{si}dy}$ channel single-top quark production.							
200	$p_T > 120$ GeV overflow bin	ATLAS $H \to Z\gamma$ sign	$\overline{\text{ATLA}} \left \frac{d\sigma}{dp_{t+\bar{t}}^T} \right R_t \left(p_{t+\bar{t}}^T \right)$							
	ATLAS W ⁺ W ⁻ fiducial differen	ATLAS $H \rightarrow \mu^{+}\mu^{-}$ si	ATLA CMS measurement of t-channel single-top and anti-top cross sections.	4	[43]					
	$\frac{d\sigma}{dp_{\ell_1}^T}$		$f_0 = f_t = \sigma_t, \sigma_{\bar{t}}, \sigma_{t+\bar{t}} \& R_t.$							
	$ATLAS W^{\pm} Z$ fiducial differentia	l cross section in the 0+	CMS measurement of the t-channel single-top and anti-top cross sections.	1 1 1 1	[44]					
	$\frac{d\sigma}{dp_{Z}^{T}}$	a cross section in the c	$f_0, f_L = \sigma_t \sigma_t \sigma_{t+\bar{t}} R_t.$	4 4	[45]					
200	dp_Z^T CMS $W^{\pm}Z$ normalised fiducial d	:fforontial areas section	ATLA CMS t-channel single-top differential distributions. CMS $t = \frac{d\sigma}{d\tau} = \frac{d\sigma}{d\tau}$	4 4	[45]					
		inerential cross section	$ATIA$ $dp_{t+\bar{t}}^* + d y_{t+\bar{t}} $	ramai	nta					
1	channel, $\frac{1}{\sigma} \frac{d\sigma}{dp_Z^T}$		ATLAS tW cross section measurement. CMS tZ cross section measurement.		1112					
4	ATLAS Zjj fiducial differential c	ross section in the $\ell^+\ell^-$	CMS to the test to the test test to the test test test test test test test	1 •	H					
No.	LHC Run 1 Higgs		CMS 1	ed in						
1		l:	$ \begin{array}{c c} \frac{d\sigma}{dp_{t+\bar{t}}^T} & \text{ATLAS } tZ \text{ cross section measurement.} \\ \hline \text{CMS } tZ \left(Z \to \ell^+ \ell^-\right) \text{ cross section measurement.} \\ \end{array} $							
	ATLAS and CMS LHC Run 1 co	00 0	$\sigma_{t} \sigma_{t} \sigma_{t+\tilde{t}} R_{t}$.	nalvsi	C M					
7	Production: ggF , VBF , ZH , W		ATLAS s-channel single-top cross section measurement.	Tary Si						
	Decay: $\gamma \gamma$, ZZ , W^+W^- , $\tau^+\tau^-$ & ATLAS inclusive $Z\gamma$ signal stren		CMS tW cross section measurement. 1	[33]						
	ATLAS inclusive $Z\gamma$ signal stren	gtii measurement	ATLAS tW cross section measurement in the single lepton channel ATLAS tW cross section measuremen JE, Madigan, Mimasu, Sanz & You, a	vrViv-2012	02770					
			TE, Madigan, Milliasu, Sanz & Tou,	IIAIV.ZUIZ.	02119					

Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry

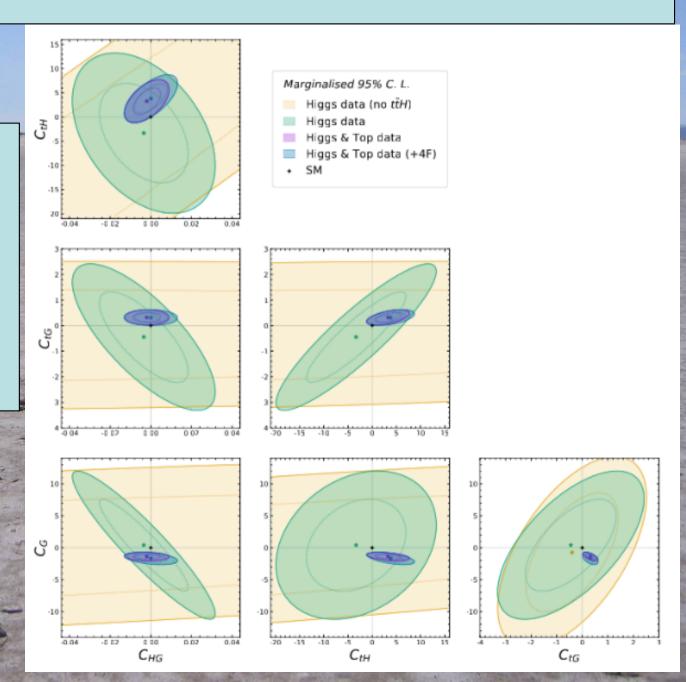

- Individual operator coefficients
- Marginalised over all other operator coefficients

Impacts of Measurements $\frac{X}{X_{SM}} = 1 + \sum_{i} \frac{a_i^X}{\Lambda^2} + \mathcal{O}$




Dimension-6 Constraints with Top-Specific $SU(2)^2 \times SU(3)^3$

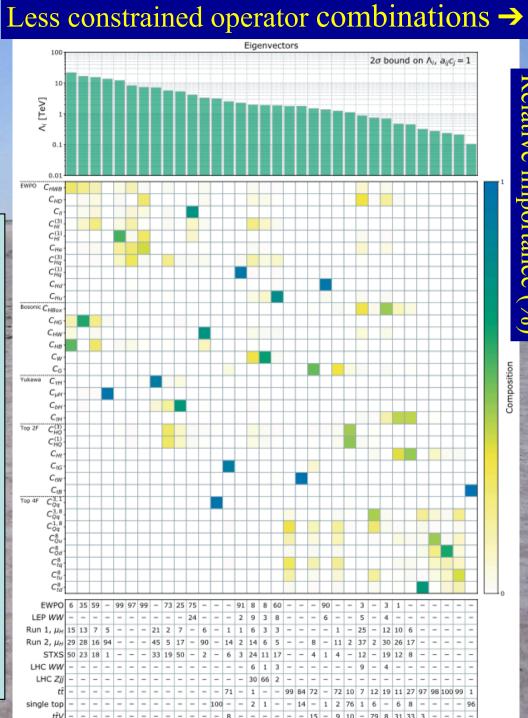
- Individual operator coefficients
- Marginalised over all other operator coefficients


Correlation Analysis

- EWPO and boson sectors correlated
- Also within top sector
- Weaker correlations between sectors

Example of Interplay between Data Sets

- Higgs data
- Include ttH
- Include top data
- Global analysis



JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

importance

Principal Component Analysis

- Diagonalise correlation matrix
- Analyze eigenvectors and eigenvalues
- Scales from 20 TeV to 100 GeV
- Strongest constraints from Electroweak, H

Relative constraining power (%)

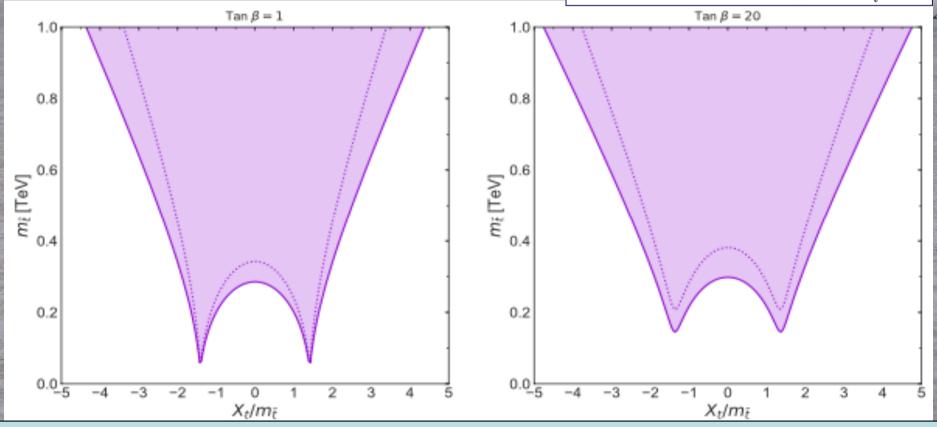
Single-Field Extensions of the Standard Model


Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
S_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
φ	0	Spin ze	ero 2	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
[1]	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
Ξ_1	9	1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
B	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
B_1	1	Vector-	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
W	1		3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
W_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$
T	$\frac{1}{2}$	3	1	$\frac{2}{3}$	TB	$\frac{1}{2}$	3	2	$\frac{1}{6}$

Contributions to SMEFT Coefficients

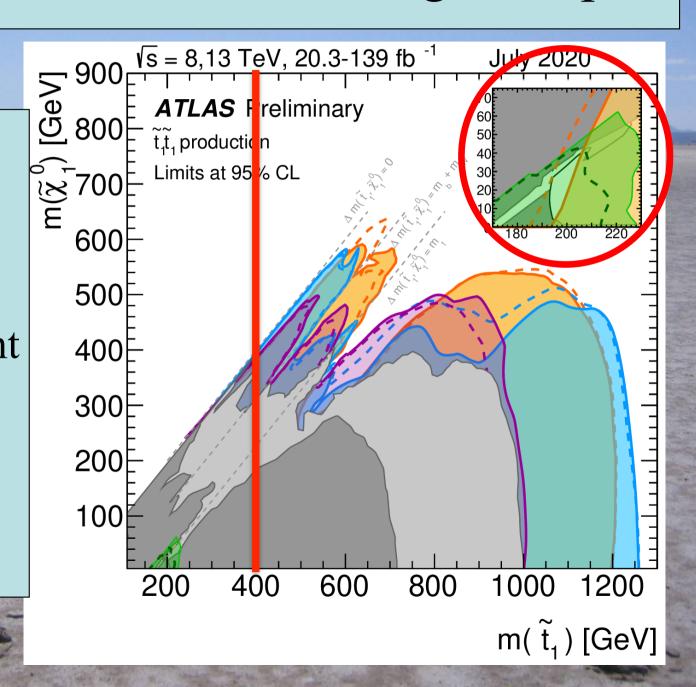
	Model	C_{HD}	C_{ll}	C_{Hl}^3	C^1_{Hl}	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
Spin ze	S						-1			
Spin Zo	S_1		1							
	Σ			$ \begin{array}{r} $	$\frac{\frac{3}{16}}{-\frac{3}{16}}$			$rac{y_{ au}}{4}$		
	Σ_1			$-\frac{5}{8}$	$-\frac{3}{16}$			$\frac{y_{ au}}{8}$		
	N			$-\frac{1}{4}$	$\frac{1}{4}$					
	E			$-\frac{1}{4}$	$-rac{1}{4}$			$\begin{array}{c} \frac{y_{\tau}}{2} \\ \frac{y_{\tau}}{2} \\ \frac{y_{\tau}}{2} \\ -\frac{y_{\tau}}{2} \end{array}$		
	Δ_1					$\begin{array}{c} \frac{1}{2} \\ -\frac{1}{2} \end{array}$		$rac{y_{ au}}{2}$		
	Δ_3					$-rac{1}{2}$		$rac{y_{ au}}{2}$		
	B_1	1					$-\frac{1}{2}$	$-rac{y_{ au}}{2}$	$-rac{y_t}{2}$	$-rac{y_b}{2}$
Spin ze	ero =	-2					$\frac{1}{2}$	$u_{ au}$	y_t	y_b
A SECTION AND ADDRESS OF THE PARTY OF THE PA	W_1 Ve	ector $-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
Spin ze	ero φ							$-y_{ au}$	$-y_t$	$-y_b$
	$\{B,B_1\}$	Vector					1	$y_{ au}$	y_t	y_b
	$\{Q_1,Q_7\}$								y_t	
	Model	C_{HG}	C_{Hq}^3	C^1_{Hq}	$(C_{Hq}^3)_{33}$	$(C^1_{Hq})_{33}$	C_{Hu}	C_{Hd}	C_{tH}	C_{bH}
	U		$-\frac{1}{4}$	$\begin{array}{c} \frac{1}{4} \\ -\frac{1}{4} \end{array}$	$-\frac{1}{4}$	$rac{1}{4}$			$rac{y_t}{2}$	
4.4	D		$\begin{array}{c c} -\frac{1}{4} \\ -\frac{1}{4} \end{array}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$				$\frac{y_b}{2}$
	Q_5							$-\frac{1}{2}$		$\frac{y_b}{2}$
	Q_7						$rac{1}{2}$		$rac{y_t}{2}$	
	T_1		15 8 - - - - - -	$-\frac{3}{16}$	$-\frac{5}{8}$	$-\frac{3}{16}$			$rac{y_t}{4}$	$egin{array}{c} rac{y_b}{8} \ rac{y_b}{4} \end{array}$
	T_2		$-\frac{5}{8}$	$-\frac{3}{16}$ $\frac{3}{16}$	$-\frac{5}{8}$	$\frac{3}{16}$			$\frac{y_t}{8}$	$\frac{y_b}{4}$
The state of the s	T	$-rac{M_T^2}{v^2}rac{lpha_s(0.02)}{8\pi}$			$-rac{5}{8} \ -rac{5}{8} \ -rac{1}{2}rac{M_T^2}{v^2}$	$-rac{3}{16} \ rac{3}{16} \ rac{1}{2} rac{M_T^2}{v^2}$			$\frac{\frac{y_t}{4}}{\frac{y_t}{8}}$ $y_t \frac{\frac{M_T^2}{v^2}}{}$	

Constraints on Single-Field BSM Scenarios

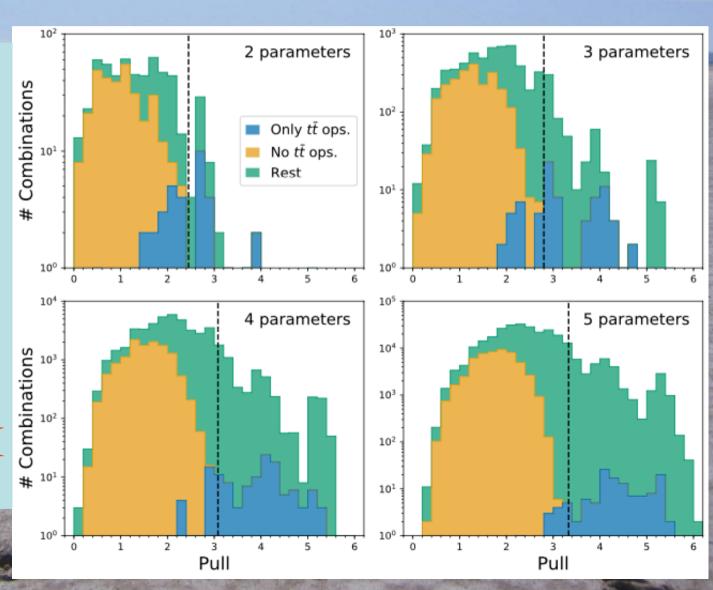

- No significant pulls away from SM
- Any single-field extension of SM must have mass scale > 400 GeV if coupling = 1

SMEFT Constraints on Light Stops

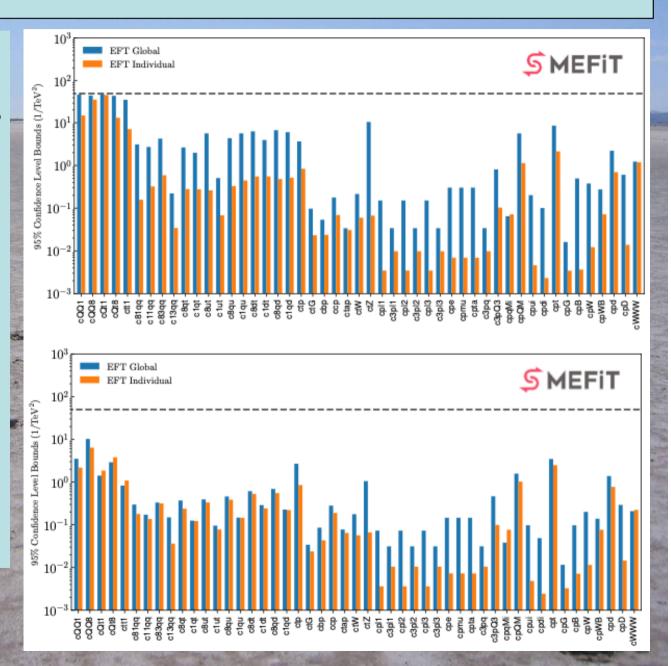
From quantum loop corrections:


$$\begin{split} C_{HG} &= \frac{g_s^2}{12} \frac{h_t^2}{(4\pi)^2} \Big[(1 + \frac{1}{12} \frac{c_{2\beta} g^{'2}}{h_t^2}) - \frac{1}{2} \frac{X_t^2}{m_{\tilde{t}}^2} \Big] \,, \\ C_{HB} &= \frac{17g^{'2}}{144} \frac{h_t^2}{(4\pi)^2} \Big[(1 + \frac{31}{102} \frac{c_{2\beta} g^{'2}}{h_t^2}) - \frac{38}{85} \frac{X_t^2}{m_{\tilde{t}}^2} \Big] \,, \\ C_{HW} &= \frac{g^2}{16} \frac{h_t^2}{(4\pi)^2} \Big[(1 - \frac{1}{6} \frac{c_{2\beta} g^{'2}}{h_t^2}) - \frac{2}{5} \frac{X_t^2}{m_{\tilde{t}}^2} \Big] \,, \\ C_{HWB} &= -\frac{gg'}{24} \frac{h_t^2}{(4\pi)^2} \Big[(1 + \frac{1}{2} \frac{c_{2\beta} g^2}{h_t^2}) - \frac{4}{5} \frac{X_t^2}{m_{\tilde{t}}^2} \Big] \,, \end{split}$$

(Almost) model-independent lower limit on stop squark mass


Direct Search Constraints on Light Stops

- Patchwork of many modeldependent searches
- Indirect constraint excludes lowmass region (almost) modelindependently


Model-Independent BSM Survey

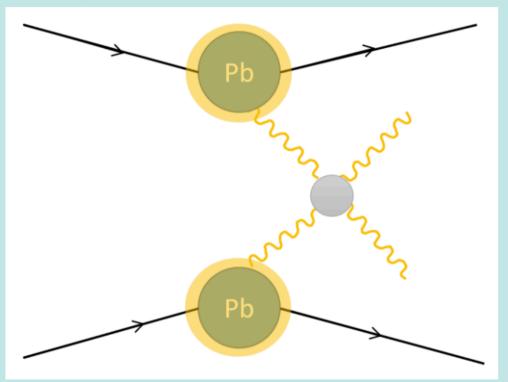
- Top-less sector fits SM very well
- Top sector does not fit so well
- Overall, pulls not excessive
- No hint of BSM

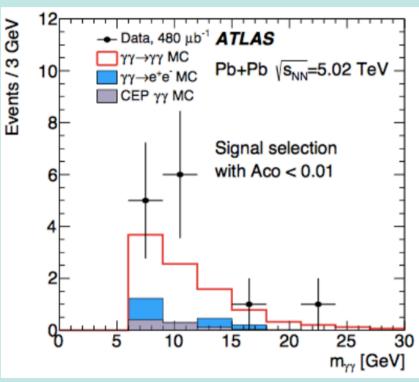
Comparison of Linear and Quadratic Fits

- Quadratic fit does not include EWPOs
- Tighter constraints in general
- What about dimension 8?
- Fitting process slower, difficult to make broad BSM survey

How about Dimension 8?

Some windows of opportunity:


Light-by-light scattering


gg → γγ

Neutral triple-gauge couplings

First Measurement of Light-by-Light Scattering

• Peripheral heavy-ion collisions at the LHC: $\gamma\gamma \rightarrow \gamma\gamma$

- Expected in ordinary QED from fermion loops
- ATLAS measurement agrees with QED
- Can be used to constrain nonlinearities in Born-Infeld

Supplement on dimension-8 operators

Light-by-Light Scattering in QED

- Electron (charged particle) loops induce light-by-light scattering: γ
- First calculations:

Bemerkungen zur Diracschen Theorie des Positrons.

Von W. Heisenberg in Leipzig.

(Eingegangen am 21. Juni 1934.)

Folgerungen aus der Diracschen Theorie des Positrons.

Von W. Heisenberg und H. Euler in Leipzig.

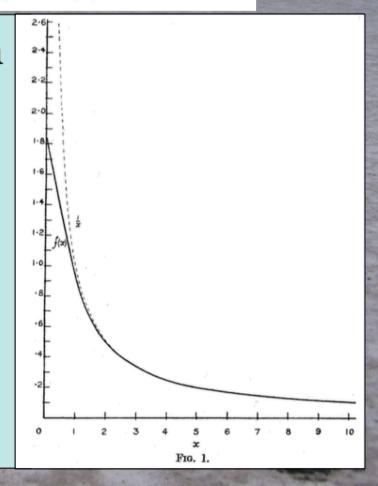
Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

$$\mathfrak{L} = \frac{1}{2} \left(\mathfrak{E}^{2} - \mathfrak{B}^{2} \right) + \frac{e^{2}}{h c} \int_{0}^{\infty} e^{-\eta} \frac{\mathrm{d} \eta}{\eta^{3}} \left\{ i \eta^{2} \left(\mathfrak{E} \mathfrak{B} \right) \cdot \frac{\cos \left(\frac{\eta}{|\mathfrak{E}_{k}|} \sqrt{\mathfrak{E}^{2} - \mathfrak{B}^{2} + 2 i \left(\mathfrak{E} \mathfrak{B} \right)} \right) + \text{konj}}{\cos \left(\frac{\eta}{|\mathfrak{E}_{k}|} \sqrt{\mathfrak{E}^{2} - \mathfrak{B}^{2} + 2 i \left(\mathfrak{E} \mathfrak{B} \right)} \right) - \text{konj}} \right\}$$

$$+ |\mathfrak{E}_{k}|^{2} + \frac{\eta^{2}}{3} (\mathfrak{B}^{2} - \mathfrak{E}^{2})$$

Born-Infeld Theory

Foundations of the New Field Theory.


By M. Born and L. Infeld,† Cambridge.

(Communicated by R. H. Fowler, F.R.S.—Received January 26, 1934.)

Original Born-Infeld modification of QED:

$$L = b^2 \left(\sqrt{1 + \frac{1}{b^2} (H^2 - E^2)} - 1 \right).$$

- Based on "unitarian" idea of maximum electromagnetic field, cf, velocity of light
- Limit on Coulomb potential

Born-Infeld & String Theory

Original Born-Infeld modification of QED:

$$\mathcal{L}_{ ext{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \rightarrow \mathcal{L}_{ ext{BI}} = \beta^2 \left(1 - \sqrt{1 + \frac{1}{2\beta^2} F_{\mu\nu} F^{\mu\nu} - \frac{1}{16\beta^4} (F_{\mu\nu} \tilde{F}^{\mu\nu})^2} \right)$$

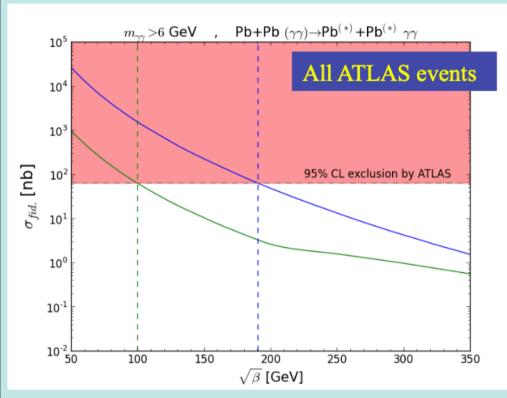
• Derived from string theory:

in D dimensions:
$$\int d^D y \left[\det \left(\delta_{\mu\nu} + 2\pi\alpha' F_{\mu\nu} \right) \right]^{1/2}$$

4 dimensions: $[\det(\delta_{\mu\nu} + \overline{F}_{\mu\nu})]^{1/2} = [1 + \frac{1}{2}\overline{F}_{\mu\nu}^2 + \frac{1}{16}(\overline{F}_{\mu\nu}\overline{F}_{\mu\nu}^*)^2]^{1/2}$

• Limiting gauge field $\leftarrow \rightarrow$ brane velocity = light

$$\mathcal{L}_{BI} \propto \sqrt{1 - (2\pi\alpha' e \mathbf{E})^2} \leftrightarrow \mathcal{L}_{particle} \propto \sqrt{1 - v^j v_j}$$

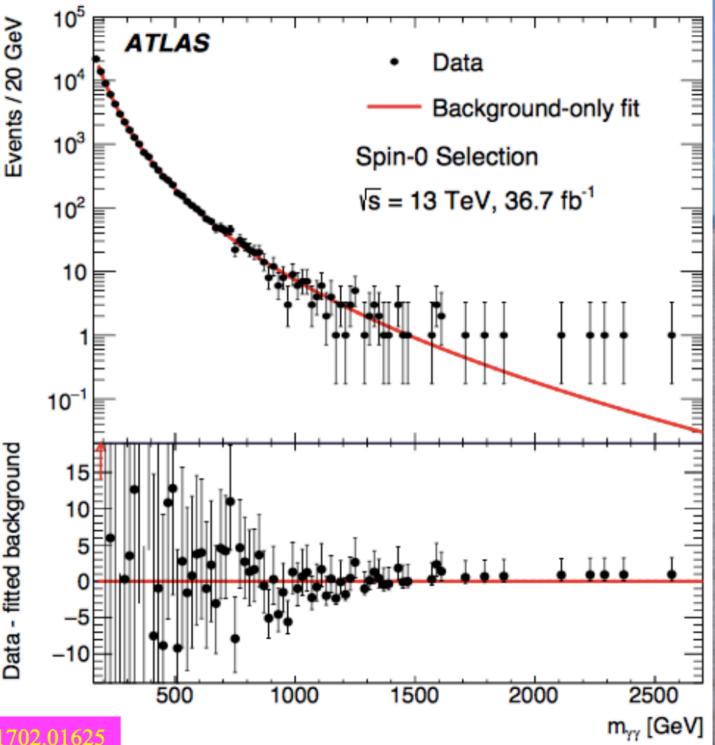

• Mass scale $M = \sqrt{\beta}$

 \leftarrow → 1/distance between branes, \geq TeV?

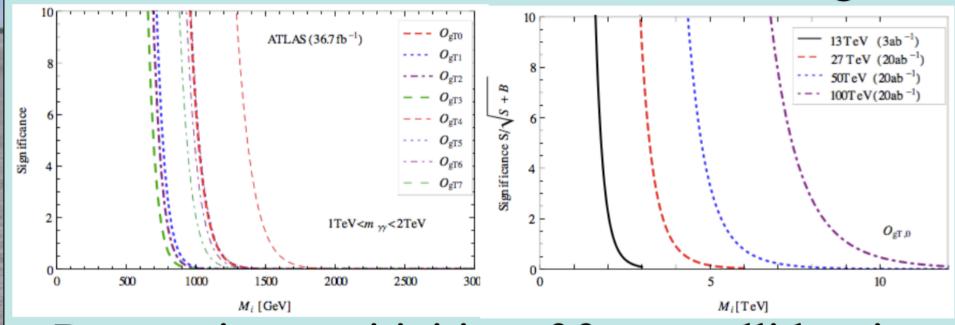
Constraint on Born-Infeld Scale

JE, Mavromatos & You, arXiv:1703.08450

• ATLAS constraint on $\sigma(\gamma\gamma \rightarrow \gamma\gamma)$ constrains $M = \sqrt{\beta}$



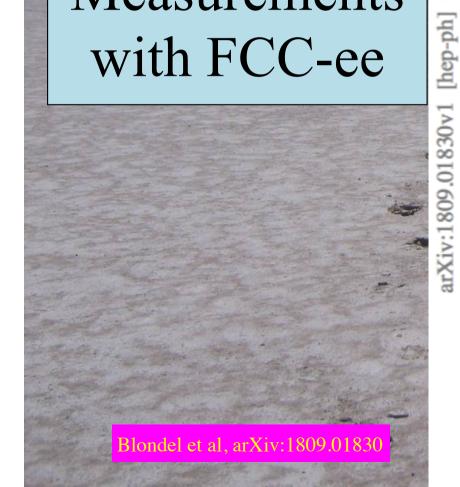
- All events with $m_{\gamma\gamma} \le M$: limit $M \approx 100, 210 \text{ GeV}$
- Assume $\sigma = 1/m_{\gamma\gamma}^2$ at higher masses: $M \approx 190,330 \text{ GeV}$
- Entering range of low-scale brane models


Production of Isolated γγ at LHC

- Data agree with SM
- Can be used to constrain dimension-8 ggγγ operators

Constraints from Collider Data

• ATLAS: 95% CL lower limits in TeV range



- Prospective sensitivities of future colliders in multi-TeV range
- Unique window on dimension-8 physics

Summary

- Remember Sun Tzu: search for new physics indirectly as well as directly
- SMEFT is an effective, model-independent tool for probing indirectly possible physics beyond the SM
- It can be used to analyze jointly precision electroweak, diboson and top quark data from LHC and elsewhere
- Our current analysis indicates that the scale of new physics is probably > TeV
- Useful for assessing sensitivities of proposed future accelerators

Precision Electroweak Measurements with FCC-ee

Standard Model Theory for the FCC-ee: The Tera-Z

Report on the 1st Mini workshop: Precision EW and QCD calculations for the FCC studies: methods and tools, 12-13 January 2018, CERN, Geneva

https://indico.cern.ch/event/669224/

A. Blondel¹, J. Gluza*, S. Jadach³, P. Janot⁴, T. Riemann², (editors),

A. Akhundov⁶, A. Arbuzov⁷, R. Boels⁶,

S. Bondarenko⁷, S. Borowka⁴, C.M. Carloni Calame⁶, I. Dubovyk⁶,

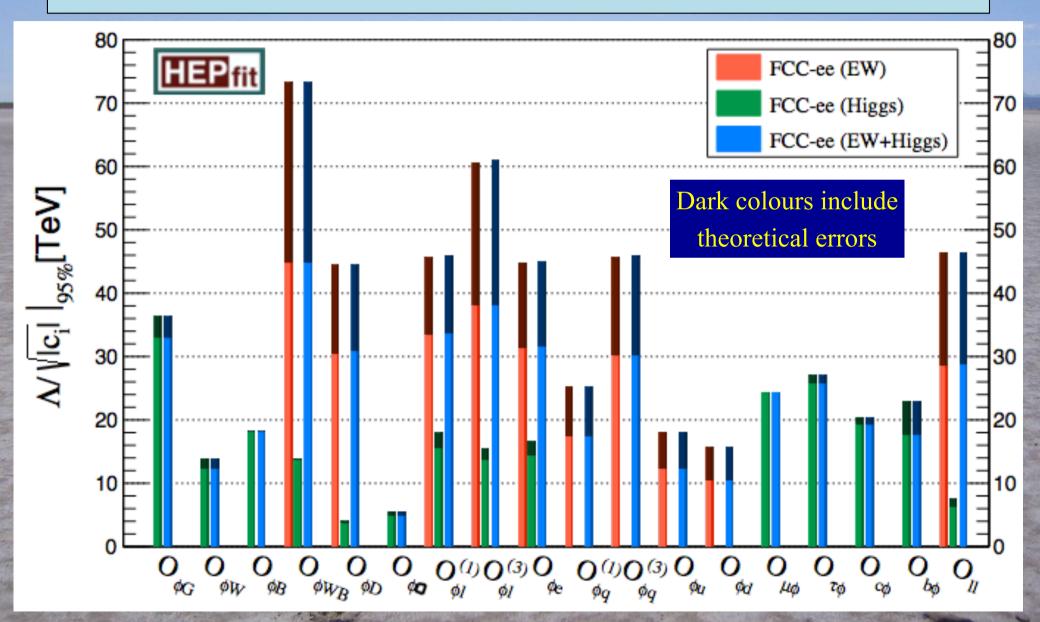
Ya. Dydyshka¹⁰, W. Flieger², A. Freitas¹¹, K. Grzanka², T. Hahn¹², T. Huber¹³,

L. Kalinovskaya¹⁰, R. Lee¹⁴, P. Marquard⁵, G. Montagna¹⁵, O. Nicrosini⁶,

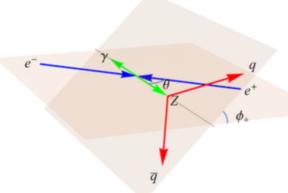
C. G. Papadopoulos¹⁶, F. Piccinini⁶, R. Pittau¹⁷, W. Płaczek¹⁶, M. Prausa¹⁶,

S. Riemann⁵, G. Rodrigo²⁰, R. Sadykov¹⁰, M. Skrzypek³, D. Stöckinger²¹, J. Usovitsch²²,

B.F.L. Ward²³,¹², S. Weinzierl²⁴, G. Yang²⁵, S.A. Yost²⁶


¹DPNC University of Geneva, Switzerland, ²Institute of Physics, University of Silesia, 40-007 Katowice, Poland. 3 Institute of Nuclear Physics, PAN, 31-342 Krakow, Poland. 4 CERN, CH-1211 Genéve 23, Switzerland. 5 Deutsches Elektronen-Synchrotron, DESY, 15738 Zeuthen, Germany, 6 Departamento de Física Teorica, Universidad de València, 46100 València, Spain and Azerbaijan National Academy of Sciences, ANAS, Baku, Azerbaijan, Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980 Russia, 8II. Institut f\u00fcr Theoretische Physik. Universit\u00e4t Hamburg, 22761 Hamburg, Germany, \u00a9Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy, 10 Dzhelepov Laboratory of Nuclear Problems, JINR, Dubna, 141980 Russia, 11 Pittsburgh Particle physics, Astrophysics & Cosmology Center (PITT PACC) and Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA, ¹²Max-Planck-Institut für Physik, 80805 München, Germany, ¹³Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany, 14 The Budker Institute of Nuclear Physics, 630090, Novosibirsk, ¹⁵Dipartimento di Fisica, Università di Pavia, Pavia, Italy, ¹⁶Institute of Nuclear and Particle Physics, NCSR Demokritos, 15310, Greece, 17 Dep. de Física Teórica y del Cosmos and CAFPE, Universidad de Granada. E-18071 Granada, Spain, 18 Marian Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Kraków, Poland, 19 Albert-Ludwigs-Universität, Physikalisches Institut, Freiburg, Germany, 20 Instituto de Física Corpuscular, Universitat de València - CSIC, 46980 Paterna, València, Spain, 21 Institut für Kernund Teilchenphysik, TU Dresden, 01069 Dresden, Germany, 22 Trinity College Dublin - School of Mathematics, Dublin 2, Ireland, 23 Baylor University, Waco, TX, USA, 24 PRISMA Cluster of Excellence, Inst. für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany, 25 CAS Key Laboratory of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China, 26 The Citadel, Charleston, SC, USA

^{*} Corresponding editor, E-mail: janusz.gluza@cern.ch.



6 Sep 2018

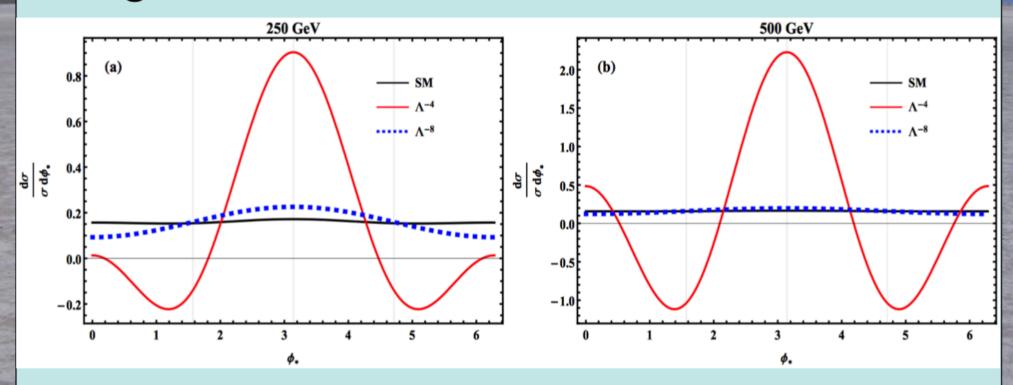
Future EFT Constraints from Higgs and Electroweak Measurements

Beyond Dimension 6

- Neutral triple gauge couplings have no dimension-4, -6 contributions
- Appear first at dimension-8:

$$g\mathcal{O}_{G+} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} + D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}) \qquad \mathcal{O}_{\widetilde{B}W} = \mathrm{i}\,H^{\dagger}\widetilde{B}_{\mu\nu}W^{\mu\rho}\{D_{\rho},D^{\nu}\}H$$

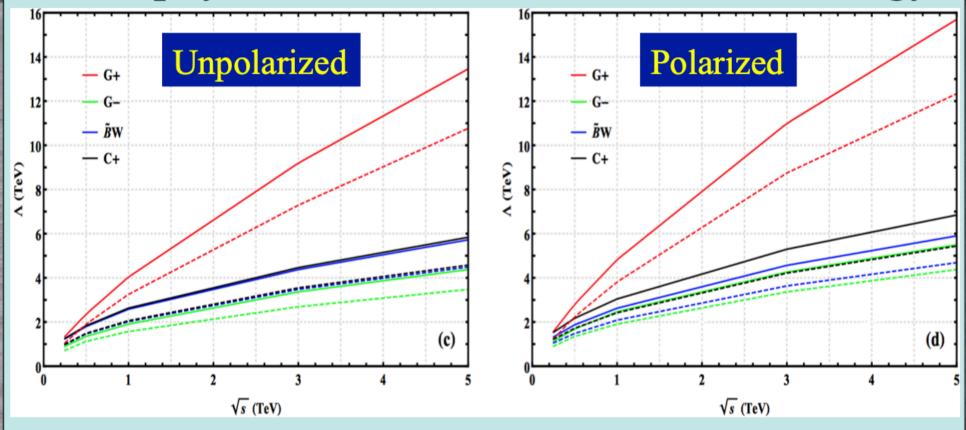
$$g\mathcal{O}_{G-} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} - D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}) \qquad \mathcal{O}_{C+} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}[D_{\rho}(\overline{\psi_{L}}T^{a}\gamma^{\nu}\psi_{L}) + D^{\nu}(\overline{\psi_{L}}T^{a}\gamma_{\rho}\psi_{L})]$$

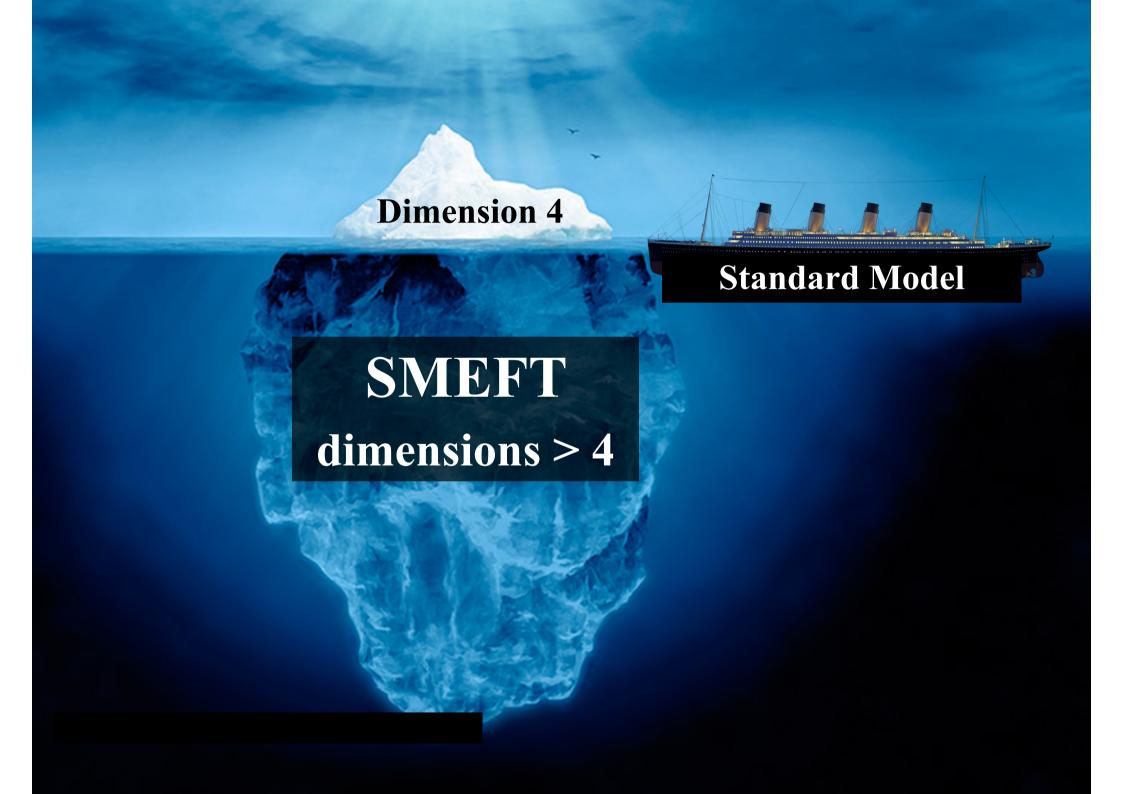

• Probe in $e^+e^- \rightarrow Z\gamma$, using hadronic Z decays:

-			17								
\sqrt{s}	$\Lambda_{G+}^{2\sigma}$	$\Lambda_{G+}^{5\sigma}$	$\Lambda_{G-}^{2\sigma}$	$\Lambda_{G-}^{5\sigma} \qquad \Lambda_{\widetilde{B}W}^{2\sigma}$		$\Lambda_{\widetilde{B}W}^{5\sigma}$	$\Lambda_{C+}^{2\sigma}$	$\Lambda^{5\sigma}_{C+}$			
0.25	(1.3, 1.6)	(1.0, 1.2)	(0.9, 1.1)	(0.72, 0.89)	(1.2, 1.3)	(0.97, 1.0)	(1.2, 1.6)	(0.97, 1.2)			
0.5	(2.3, 2.7)	(1.9, 2.2)	(1.3, 1.7)	(1.1, 1.3)	(1.8, 1.9)	(1.4, 1.4)	(1.8, 2.2)	(1.4, 1.7)			
1	(3.9, 4.7)	(3.2, 3.7)	(1.9, 2.4)	(1.6, 1.9)	(2.6, 2.6)	(2.0, 2.1)	(2.6, 2.9)	(2.0, 2.4)			
3	(9.2, 11.0)	(7.2, 8.6)	(3.3, 4.2)	(2.7, 3.3)	(4.3, 4.5)	(3.5, 3.6)	(4.4, 5.2)	(3.4, 4.1)			
5	(13.4, 15.9)	(10.8, 12.7)	(4.4, 5.5)	(3.4, 4.4)	(5.7, 5.9)	(4.5, 4.7)	(5.7, 6.8)	(4.5, 5.5)			

• Unpolarized beams: $\Lambda >> E_{CM}$

Dimension-8 Operators in nTGCs


Angular distributions in SM and with dim-8


• Easy to distinguish dimension-8

Sensitivity to Dimension-8

• New physics scale Λ vs centre-of-mass energy

• Solid: 2-σ exclusion, dashed: 5-σ discovery

