"Meson-scopy": Looking into New Physics via Mesons

Doojin Kim (<u>doojin.kim@tamu.edu</u>)

High Energy Physics Seminar at Oklahoma State University September 8th, 2022

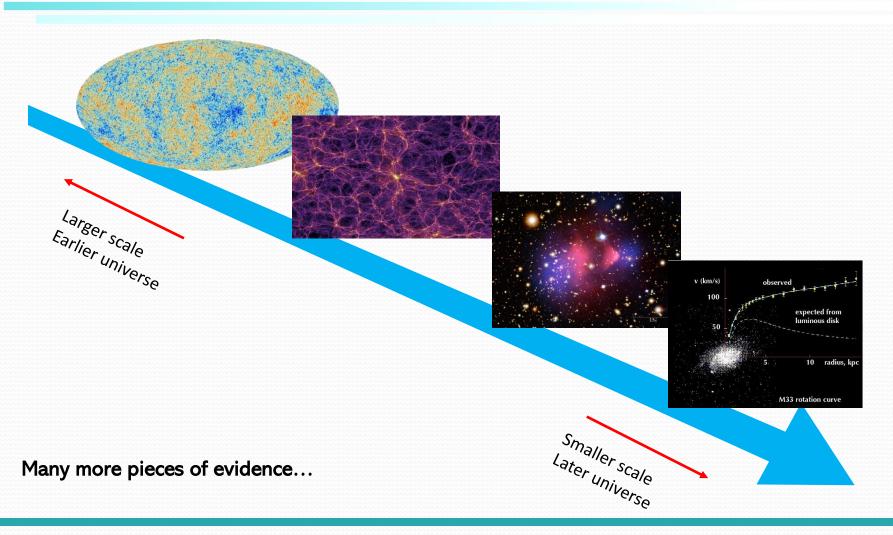
Outline

I. Motivation of Dark Sector Probes

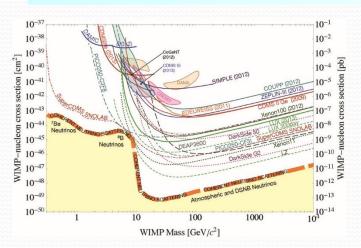
II. Meson-scopic Dark-Sector Particle Searches: Intensity Frontier

 Exotic charged meson decays, dark-sector interpretation of the MiniBooNE excess, light dark matter search at SBND

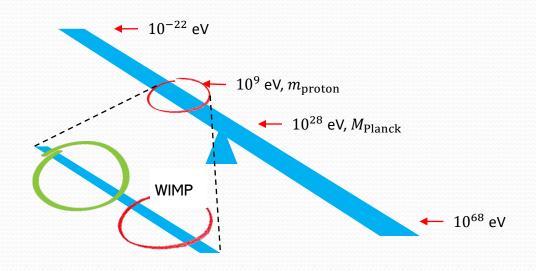
III. Meson-scopic Dark-Sector Particle Searches: Energy Frontier


 Search at forward physics facilities (e.g., FASER), search in the LHC detectors (e.g., muon system of CMS)

IV. Meson-scopic Dark-Sector Particle Searches: Cosmic Frontier


Charged mesons in the cosmic shower

V. Conclusions


Dark Matter Puzzle

Light Dark Matter and Light Mediators

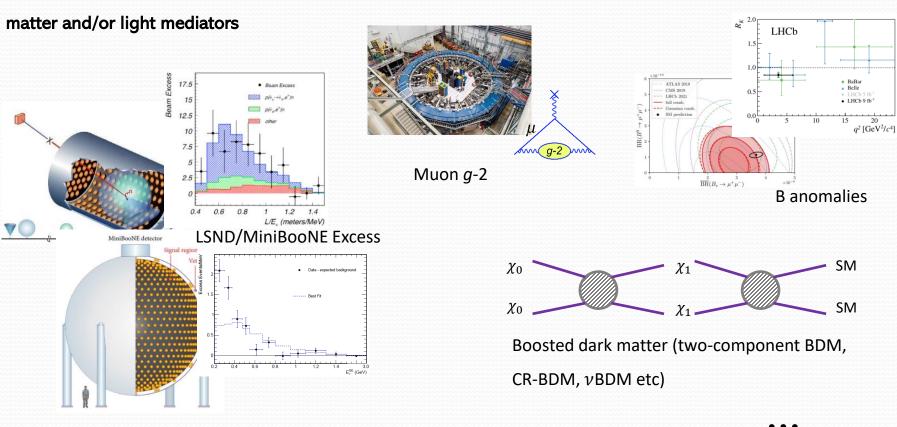
Null observation of (WIMP) dark-matter signal through non-gravitational interactions

Light dark matter and light mediators

- Can be a thermal dark matter candidate
- ✓ Less constrained by current searches
- ✓ Often <u>feebly/weakly interacting</u> with SM particles and involving <u>similar mass-range mediators</u>

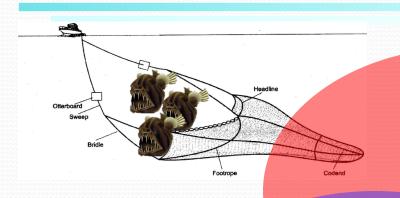
Mediator as a Portal to Dark Sectors

- □ Spin 0
 - Higgs portal $\mathcal{L}_{\mathrm{Higgs \, portal}}^{d=3,4} = -(\mu S + \lambda S^2) H^{\dagger} H$
- ☐ Spin ½
 - Neutrino portal $\mathcal{L}_{
 m neutrino\,portal}^{d=4} = -\sum y_
 u^{lpha I}(ar{L}_lpha H) N_I$
- ☐ Spin 1
 - Vector portal $\mathcal{L}_{ ext{vector portal}}^{d=4} = -rac{\epsilon}{2\cos heta_W} B_{\mu
 u} F'_{\mu
 u}$

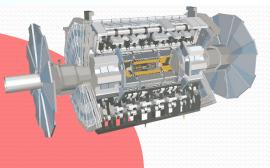


Many models/scenarios have been proposed and related pheno has been investigated for the last decade.

(See also Snowmass2021 Whitepaper "Dark Sector Studies with Neutrino Beams". [arXiv:2207.06898])


Various Phenomena and Dark-Sector Interpretations

Various HEP phenomena including excesses, anomalies, non-minimal dark-sector scenarios motivate light dark

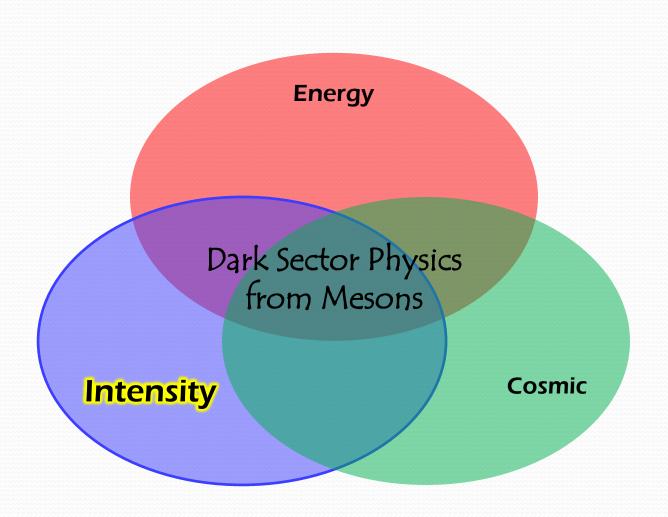


Doojin Kim 5 HEP Seminar at OSU

Trawling Dark-Sector Particles from Mesons and Complementarity

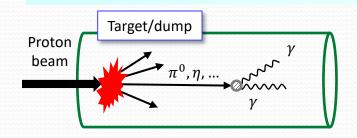
Energy

Dark Sector Physics from Mesons



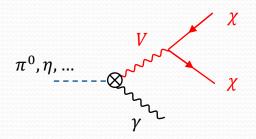
Intensity

Cosmic

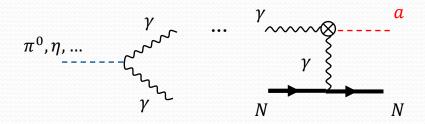


NEUtrino facilities are **NEW** physics machines

as well as neutrino factories.

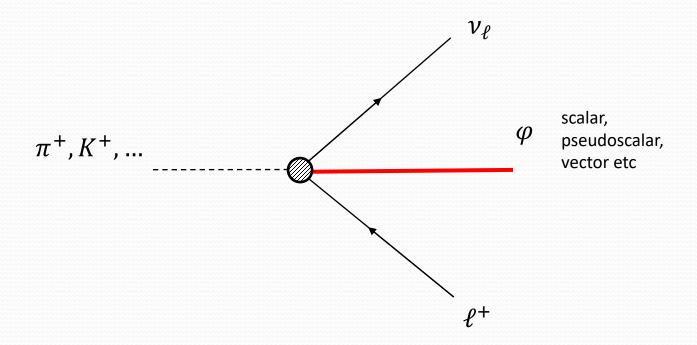

... much more BSM potentials than expected

Conventional Meson-Induced New Physics Scenarios


Promptly decaying π^0 , η

Example 1: vector-portal dark matter (χ)

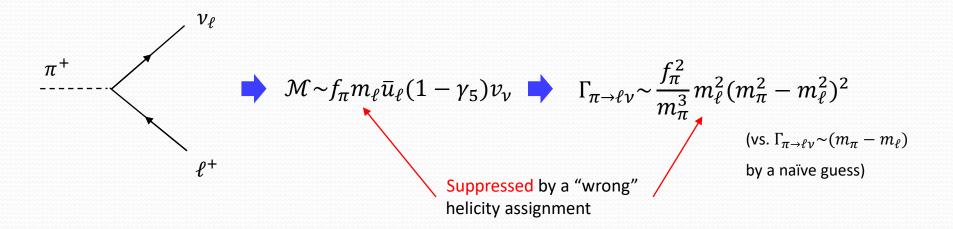
+ beam bremsstrahlung, ...

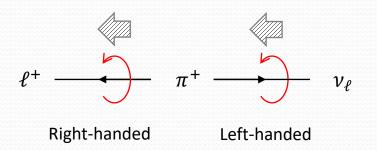

Example 2: axion-like particles (a) interacting with photons

+ E&M cascade shower photons, ...

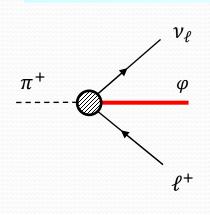
Neutral mesons have played a crucial role in production of new physics particles.

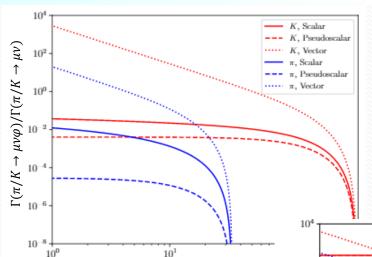
Contributions from Charged Mesons?


Charged mesons can be focused by a magnetic horn system,



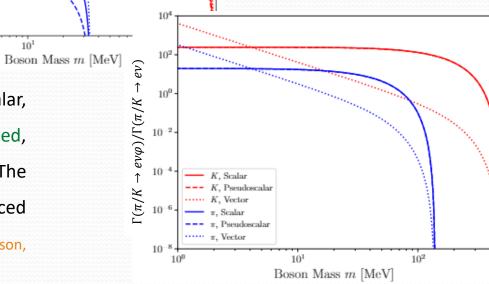
but could this decay be sizable?


Two-Body Decay of a Charged Meson

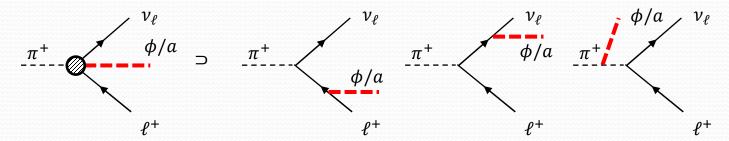


Angular momentum conservation highly suppresses the decay of scalar mesons in this way.

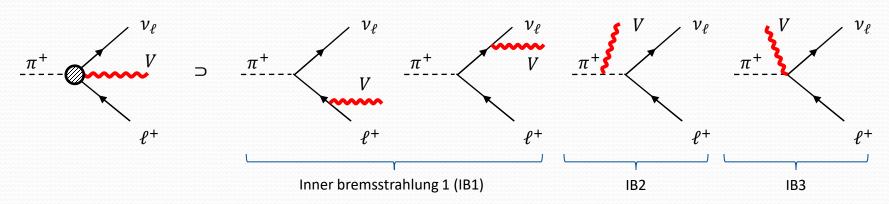
Three-Body Decay of a Charged Meson



• φ is assumed to couple to the charged lepton only and the associated couplings are set to be unity for comparison.


By adding the third particle φ (scalar, pseudoscalar, vector, etc), the helicity suppression can be evaded, i.e., 3-body decays can be **hugely enhanced**. The decay to a massive vector is even more enhanced due to the longitudinal polarization. [e.g., Carlson,

Rislow, arXiv:1206.3587]



Various Dynamics in the Three-Body Decay

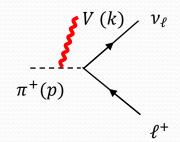
(Pseudo)scalar case

Vector case

- For models having couplings to the quark contents inside the meson, (QCD-origin) structure-dependent (SD) terms may arise.
- Typically, IB3 contributions ≫ IB2 ≈ IB1

Pion Dark Radiative Decay

$$\begin{split} \mathcal{M} &= i g_\pi \varepsilon^\mu \left[\bar{u}_\ell \gamma_\rho (1-\gamma_5) v_\nu \right] \left[\int \! d^4 x e^{iqx} \langle 0 \, | \, T \{ j_\mu(x) \bar{d} \, \Gamma^\rho u(0) \} \, | \, \pi^+ \rangle \right] \\ j_\mu &= \bar{q} \gamma_\mu q \end{split}$$


The hadronic part of the matrix element can be decomposed into a generic gauge-invariant form:

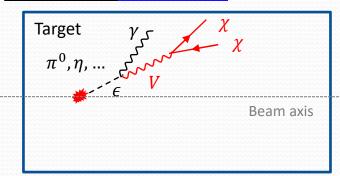
$$T_{\mu\rho} = \alpha g_{\mu\rho}(p-k) \cdot k + \beta (p-k)_{\mu} k_{\rho} + i [g_{\mu\rho}(p-k) \cdot k - (p-k)_{\mu} k_{\rho}] F_{A} + \epsilon_{\rho\mu\lambda\sigma} p^{\lambda} k^{\sigma} F_{V} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\rho}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\mu}}{2p \cdot k - m_{X}^{2}} f_{\pi} + \frac{i (2p-k)_{\mu} (p-k)_{\mu}}{2p \cdot$$

Contact interaction

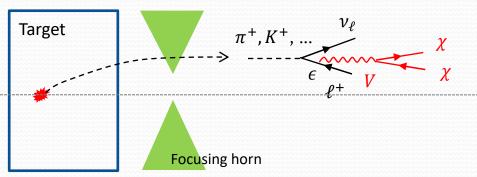
Structure-dependent contributions

IB2

If we wish to satisfy the Ward Identity for our dark current, we require $\alpha + \beta = \frac{if_{\pi}}{(p-k) \cdot k}$.


We can choose a family of (unknown) solutions for α and β .

See also more detailed discussions in [Khodjamirian, Weiler, arXiv:hep-ph/0111249].

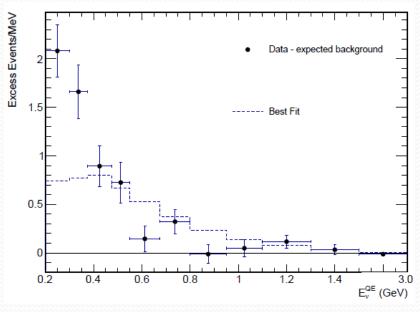

Charged Meson vs. Neutral Meson

In the example of vector-portal dark matter,

Production via neutral meson

Production via charged meson

$$N_{\pi^0-\text{ind}}^{\chi} = N_{\pi^0} \cdot \text{BR}(\pi^0 \to V \to \chi) \cdot f_{\pi^0-\text{ind}}^{\chi}$$

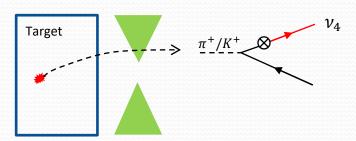

$$N_{\pi^{0}-\mathrm{ind}}^{\chi} = N_{\pi^{0}} \cdot \mathrm{BR}(\pi^{0} \to V \to \chi) \cdot f_{\pi^{0}-\mathrm{ind}}^{\chi} \qquad \langle \langle N_{\pi^{\pm}-\mathrm{ind}}^{\chi} = N_{\pi^{\pm}-\mathrm{ind}}^{\chi} = N_{\pi^{\pm}-\mathrm{ind}}^{\chi} = N_{\pi^{\pm}-\mathrm{ind}}^{\chi}$$

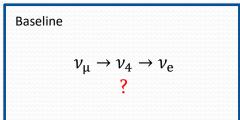
- Comparable production rate: π^0 : π^+ : π^- : η : K^+ : $K^- \approx 1$: 1: 1: 0.1: 0.1: 0.1 $\Rightarrow N_{\pi^0} \approx N_{\pi^\pm}$
- No BR enhancement vs. Large BR enhancement \Rightarrow BR $(\pi^0 \to V \to \chi) \ll$ BR $(\pi^{\pm} \to V \to \chi)$
- Unfocused π^0 , η vs. Focused π^{\pm} , K^{\pm}
- Wider spreading π^0 , η -induced flux vs. Forward-directed π^\pm , K^\pm -induced flux $\Rightarrow f_{\pi^0-\text{ind}}^\chi < f_{\pi^\pm-\text{ind}}^\chi$

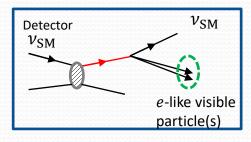
Production via charged meson can be more efficient than production via neutral meson!

Example Physics Case 1: Dark-Sector Solutions to the MiniBooNE Low-Energy Excess

MiniBooNE (MB) Low Energy Excess




[MiniBooNE Collaboration, arXiv:2006.16883]

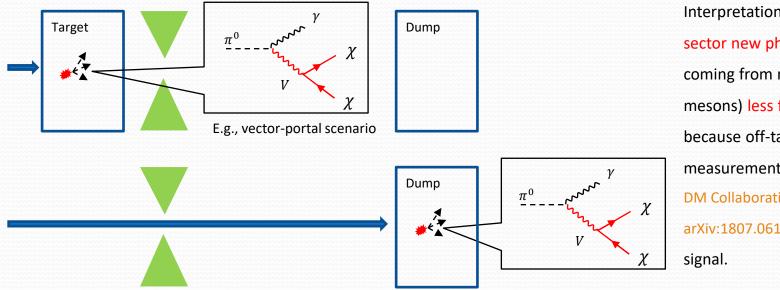

- \Box An observational motivation of new physics (4.8 σ)
- Numerous explanations, all involving

 neutrino-sector new physics [Karagiorgi, Djurcic,
 Conrad, Shaevitz, Sorel (2009); Collin, Arguelles, Conrad,
 Shaevitz (2016); Giunti, Lavender (2011); Gariazzo, Giunti,
 Lavender, Li (2017); Kopp, Maltoni, Schwetz (2011); Doring,
 Pas, Sicking, Weiler (2018); Dutta, Ghosh, Li (2020), and
 many more]

Conventional Explanations

New particles in the beam

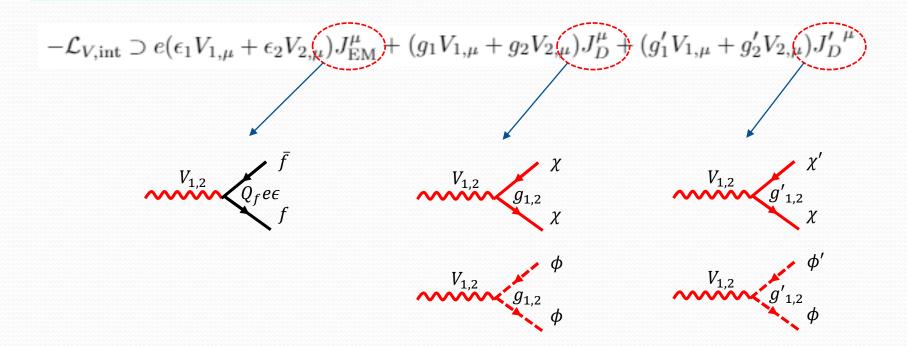
Sterile neutrino decay


Non-standard flavor transitions

- Oscillations (sterile neutrinos, Lorentz violation, matter effects, large extra dimension etc)
- Lepton number violating decay

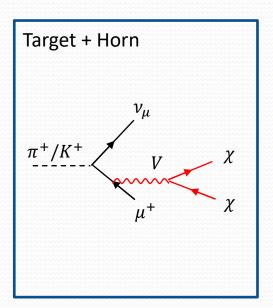
New particles produced by neutrino scattering

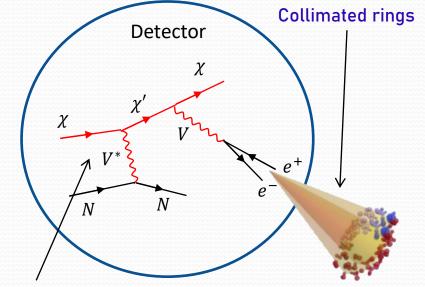
- Neutrino upscattering involving collimated an e^-e^+ pair
- Neutrino upscattering involving a photon


Dark-Sector Solutions? Challenges?

Interpretations with darksector new physics (mostly coming from neutral mesons) less favored because off-target mode measurements [MiniBooNE DM Collaboration, arXiv:1807.06137] show null

We propose an idea of plausible dark-sector scenarios for the MB excess.


An Example Model: Vector-Portal Dark Matter


- ☐ Dark photon mediators for purposes of illustration.
- Two different mediators for purposes of generality.
- \square Heavier dark-sector state χ' , ϕ' in addition to dark matter state χ , ϕ : up-scattering $\chi \to \chi'$, decay $\chi' \to \chi$ allowed.

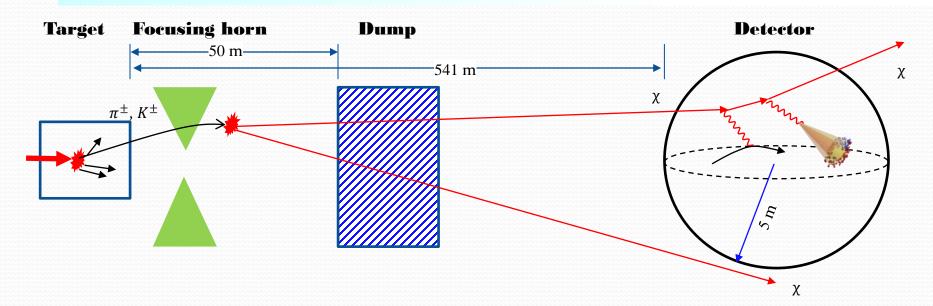
A Dark-Matter Interpretation for the MB Excess: Main Idea

$$-\mathcal{L}_{V,\text{int}} \supset e(\epsilon_1 V_{1,\mu} + \epsilon_2 V_{2,\mu}) J_{\text{EM}}^{\mu} + (g_1 V_{1,\mu} + g_2 V_{2,\mu}) J_D^{\mu} + (g_1' V_{1,\mu} + g_2' V_{2,\mu}) J_D^{\mu}$$

BR(
$$V \to 2\chi$$
):BR($V \to 2e$)
= 50%:50%

 $BR(V \to 2\chi):BR(V \to 2e) = 50\%:50\%$

for illustration

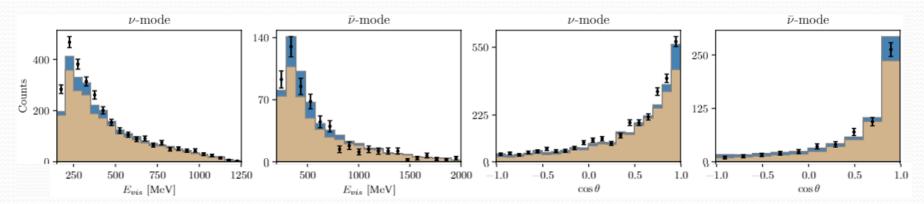

Scattering may happen through an exchange of a different mediator.

[The different mediator could be massless, e.g., dipole operator, $\overline{\chi'}\sigma^{\mu\nu}\chi F_{\mu\nu}$]

Cf. Subdominant π^0 -origin contributions are included.

[Dutta, **DK**, Thompson, Thornton, Van de Water, arXiv:2110.11944]

Simulation

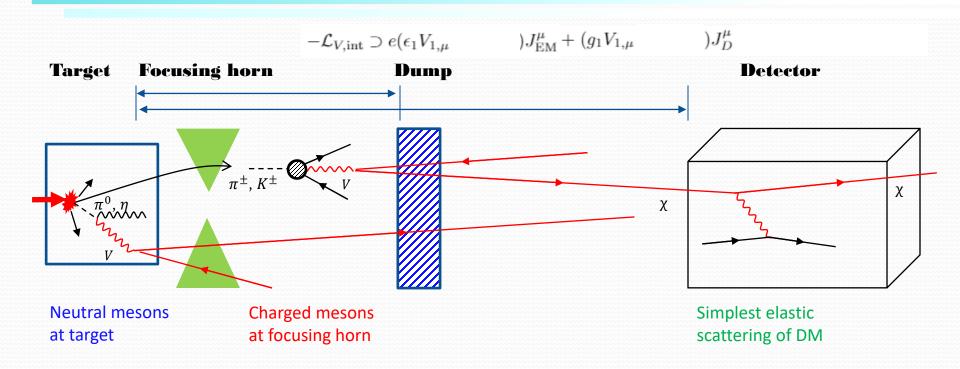


- Sanford-Wang, BMPT-like models for meson production [arXiv:0806.1449]
- Normalization based on the
 MB result [arXiv:0806.1449]
- Focused and aligned to the beam axis if $\theta \in (30,210)$ mrad
- Meson decay probability (within 50 m) according to the decay law
- Three-body decay of mesons described by MadGraph

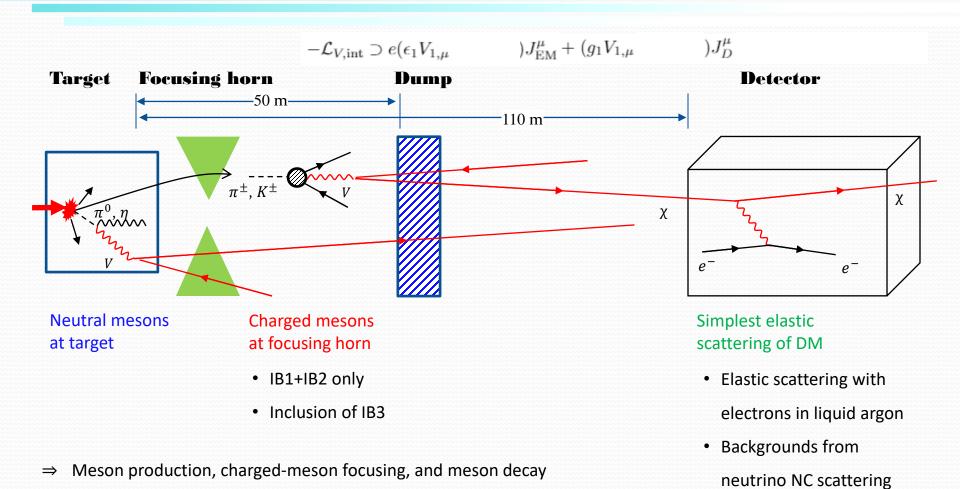
- DM upscattering in the detector fiducial volume
- Energy threshold 140 MeV, angular separation $< 10^{\circ}$, detection efficiency [arXiv:1407.6060]

Example Fit

Example fit in the double-mediator scenario

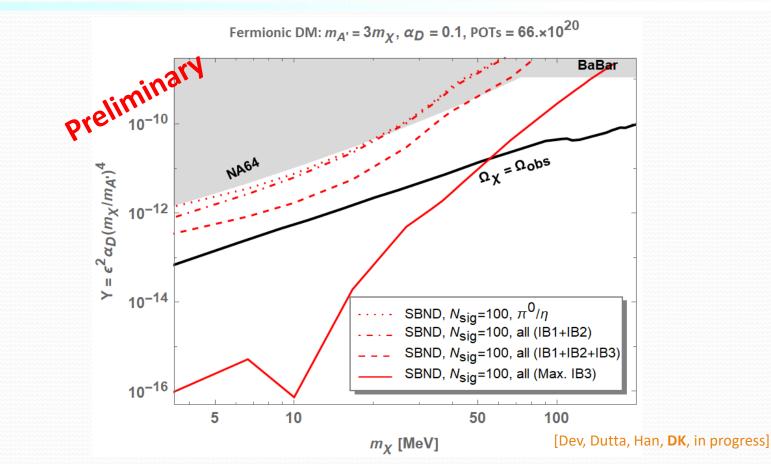

[Dutta, **DK**, Thompson, Thornton, Van de Water, arXiv:2110.11944]

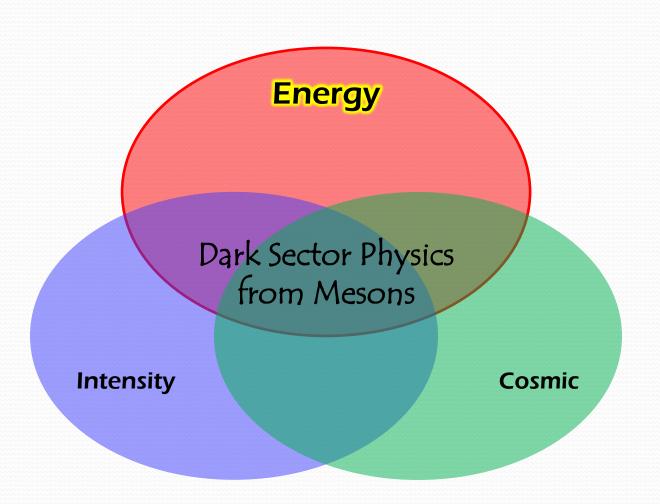
	Vector-portal dark	k matter			
Scenario	$(m_{V_1}, m_{V_2}, m_{\chi}, m_{\chi'})$	$\epsilon_1 \epsilon_2 g_2^{\prime 2}/(4\pi)$	$\chi^2/{ m dof}$		
Single	$(17, -, 8, 40) \; { m MeV}$	3.6×10^{-9}	2.5	4	Reasonable fit in the single-mediator scenario
Double	(17,200,8,50)MeV	1.3×10^{-7}	2.2		


- Best-fit parameter values consistent with the existing constraints including exotic meson decays, dark photon limits, MB off-target mode measurements (see the bonus slides)
- Other dark-sector solutions [e.g., long-lived (pseudo)scalar] available (see the bonus slides)

Example Physics Case 2: Light Dark Matter Search at SBND

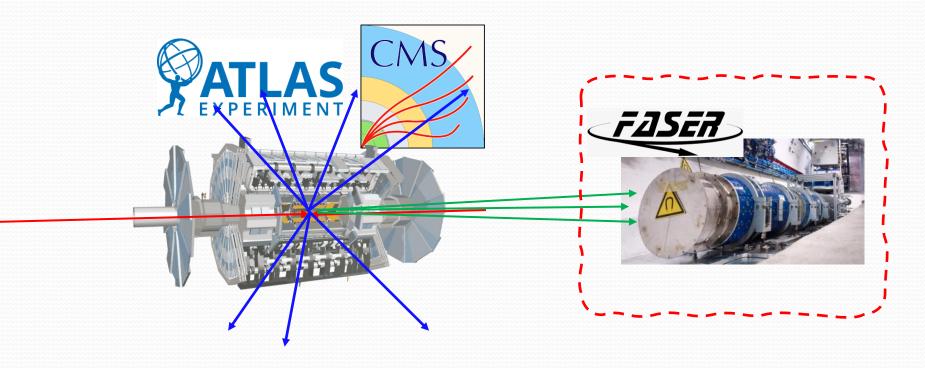
Vector-Portal Dark Matter Searches in v Experiments: Main Idea


Example Data Analysis at SBND

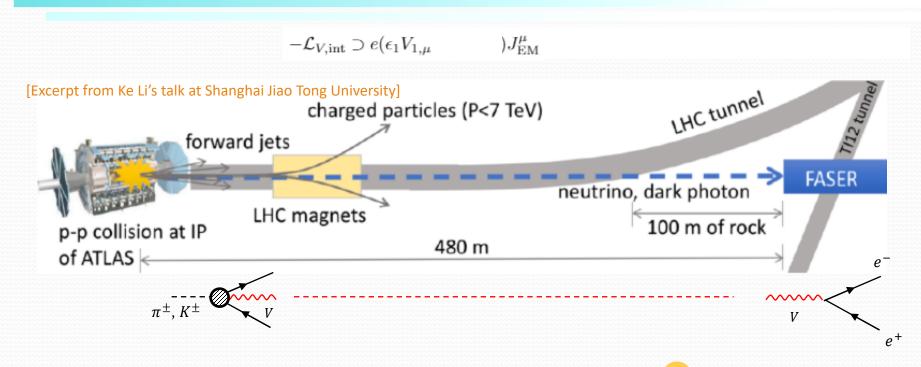

Doojin Kim 26 HEP Seminar at OSU

dynamics simulation schemes similar to those of the MB case

Expected Sensitivity

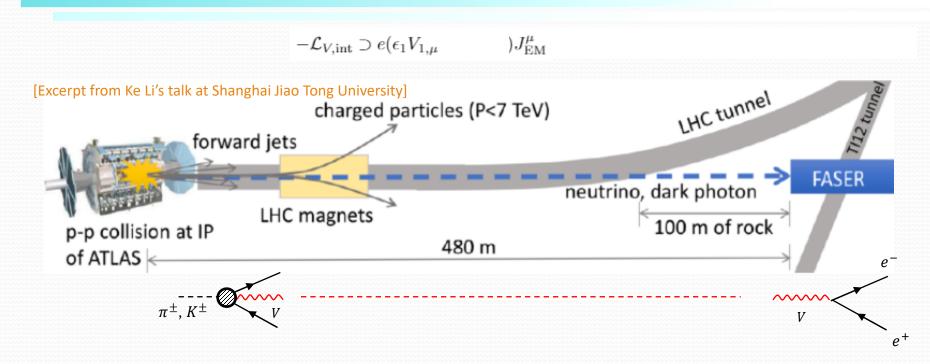


Cf. Maximum IB3 contributions are set by the measurements of exotic charged meson decays: $\pi \to \ell \nu_\ell A'$ [PIENU Collaboration, arXiv:2101.07381], $K \to \mu \nu_\mu A'$ [NA62 Collaboration, arXiv:2101.12304].



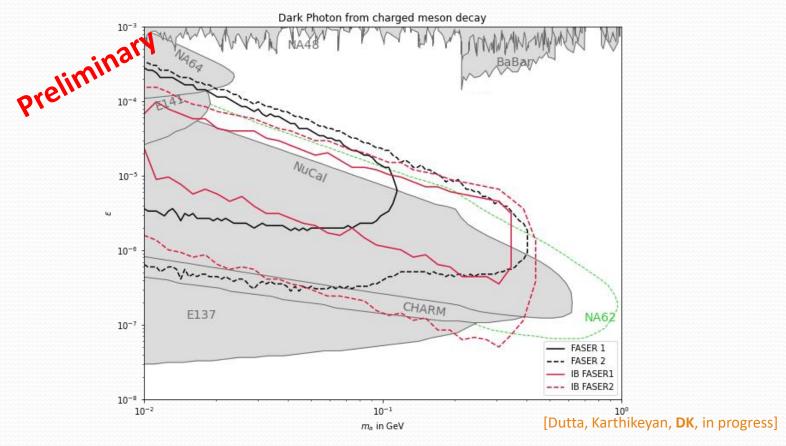
Example Physics Case 3: Light Mediator Search at LHC

"Forward" Physics and "Central" Physics

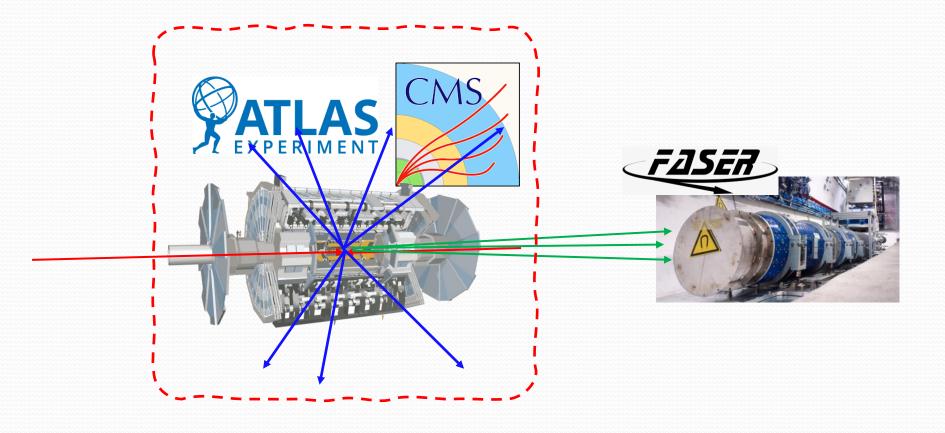


Mediator Searches: Main Idea

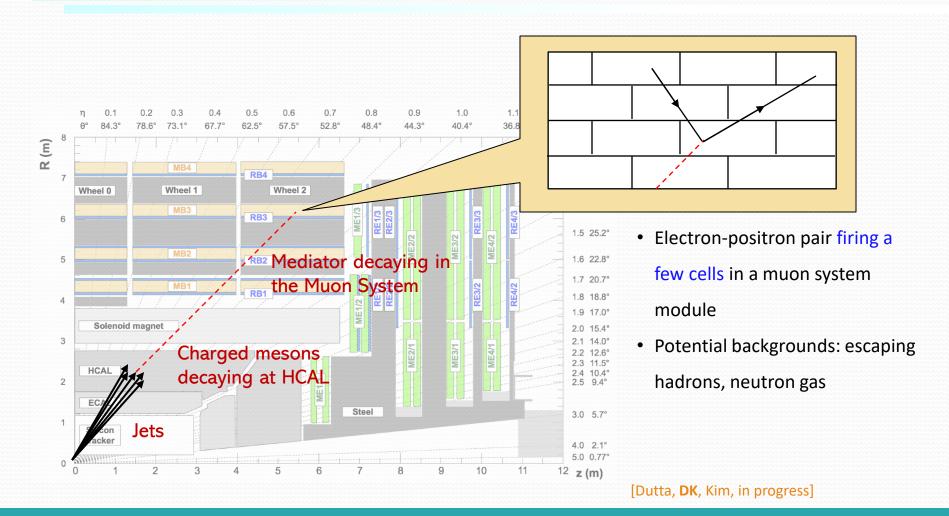
- Charged mesons are highly boosted, hence effectively focused.
- Distance between the interaction point and the magnet is small, hence a small fraction of charged meson would decay.
- IB3 will enhance the BRs of charged meson exotic decays.

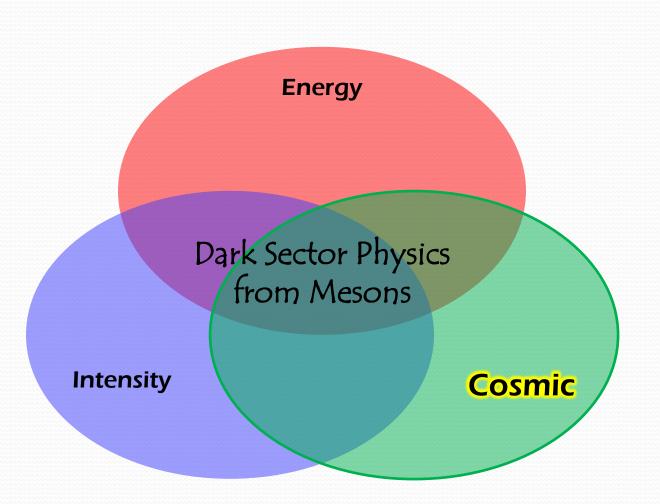

Data Analysis for the Standard Dark Photon Scenario

- Production of mesons
 described by FORESEE (via
 EPOS-LHC) [Kling, Trojanowski,
 arXiv:2105.07077]
- Charged mesons allowed to decay (conservatively)
 within ~20 m
- IB3 included

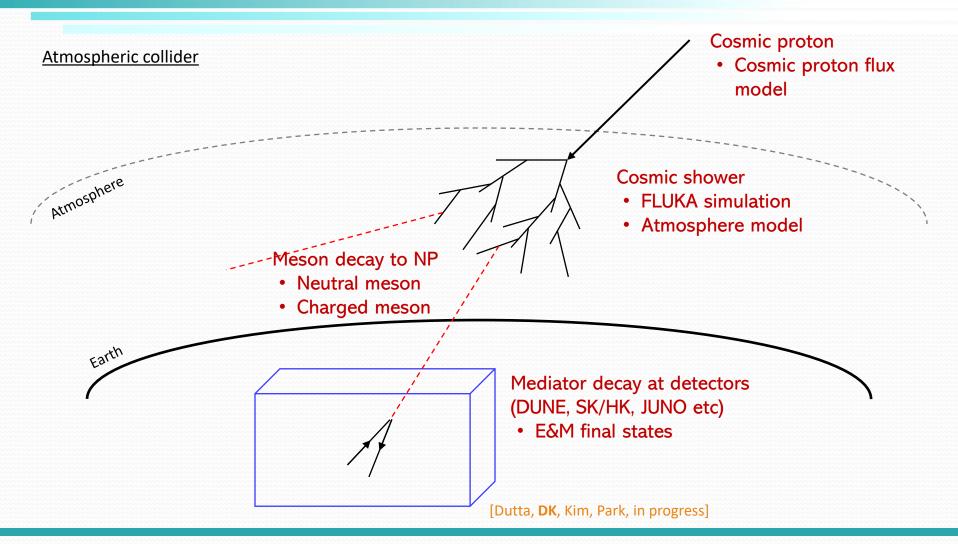

 Produced dark photon should survive before reaching the detector and decay inside the detector.

Expected Sensitivity

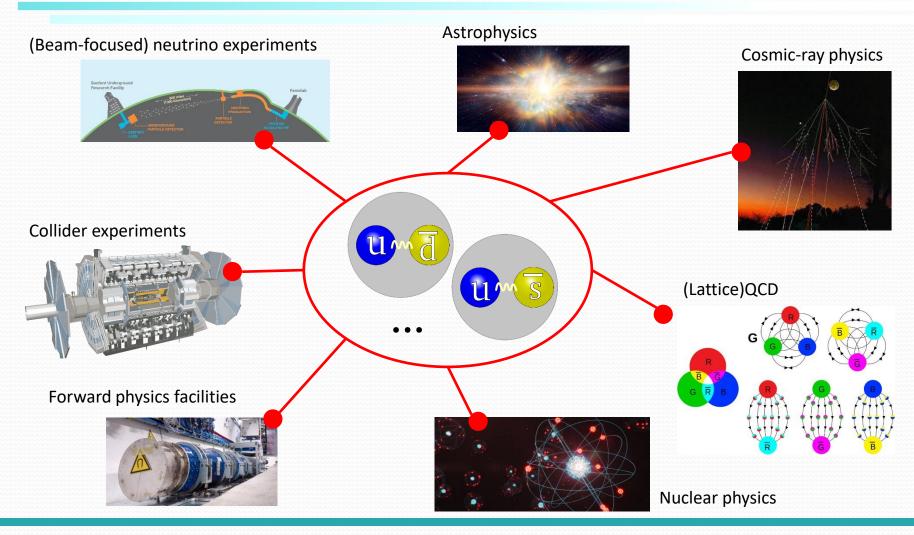



IB3 contributions are maximized with BRs set by the measurements of exotic charged meson decays: $\pi \to \ell \nu_\ell A'$ [PIENU Collaboration, arXiv:2101.07381], $K \to \mu \nu_\mu A'$ [NA62 Collaboration, arXiv:2101.12304].

"Forward" Physics and "Central" Physics



Mediator Searches at Muon System: Main Idea



Dark-Sector Probes Using Cosmic Showers: Main Idea

Various Physics Opportunities with Charged Mesons

Conclusions

- Mesons can serve as windows to look into new physics.
- ☐ Charged mesons are overlooked but **efficient sources** of new physics particles (e.g., mediators, dark matter)
 - ✓ BRs of three-body meson decays ≫ BRs of two-body meson decays
 - ✓ Focused flux of new particles (in beam-focused neutrino experiments, forward physics facilities, cosmic-ray experiments)
- □ Dark-sector signals from charged/neutral mesons can be probed in intensity-, energy-, and cosmic-frontier experiments/facilities which provide complementary information.
- Many opportunities are still unexplored.

Thank you!

Bonus Slides

Example UV Models

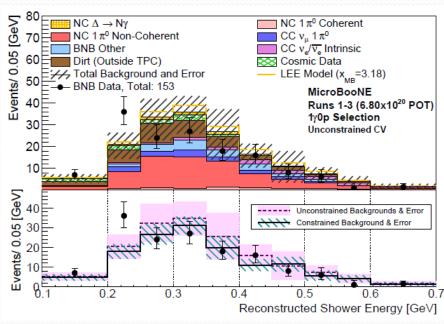
- ☐ The mediators (scalar, pseudoscalar, and vector) can emerge from various UV complete models where the scalar/pseudoscalar can couple to the SM particles via Yukawa and the vector mediators via gauge couplings.
- One can use a vector mediator with coupling $g \sim 10^{-5}$ emerging from pion and then scattering off the nucleus via exchanging a π^0 can fit the MiniBooNE excess. The exchanged particle can be a scalar/pseudoscalar as well. Example models include $U(1)_{T3R}$ [Dutta, Ghosh, Kumar, 1905.02692], $U(1)_X$ [Correia, Fajfer, 1905.03867].

Doojin Kim

41

HEP Seminar at OSU

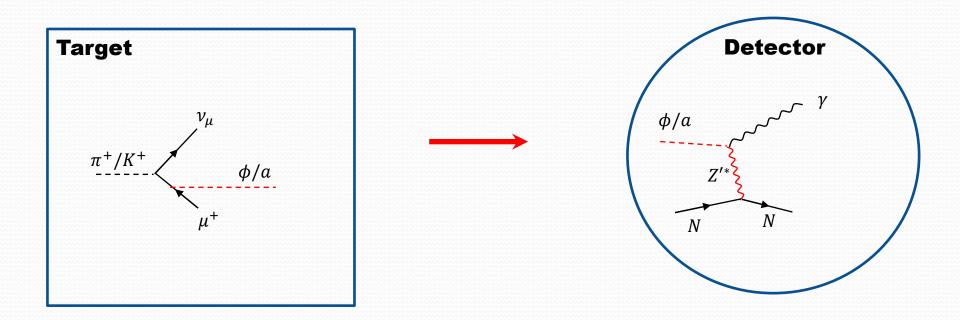
Constraints


- Limits from exotic decays of charged mesons, e.g., BR($\pi/K \rightarrow \ell \nu + \nu \nu$ or ee) < $\sim 10^{-9} 10^{-6}$
- ☐ Limits of visibly-decaying dark photons (e.g., E141, BaBar) and invisibly-decaying dark photons (e.g., NA64)

■ No significant events in the MB off-target mode

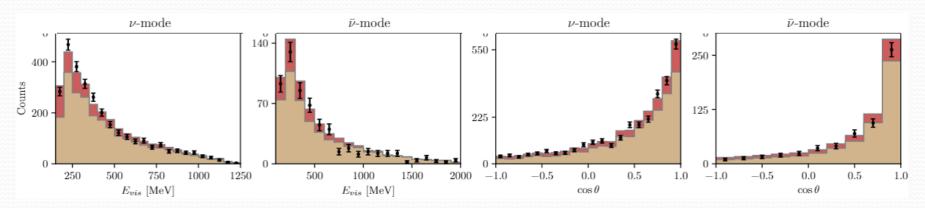
We can find respective coupling values that are consistent with these limits.

 π^0 contribution ~4(8)%, yielding ~2.4 \pm 0.5 (4.4 \pm 0.9) events in the MB off-target mode for the single(double)-mediator scenario \rightarrow Consistent with the measurement within the measurement uncertainty.


MicroBooNE Results and the MB Excess

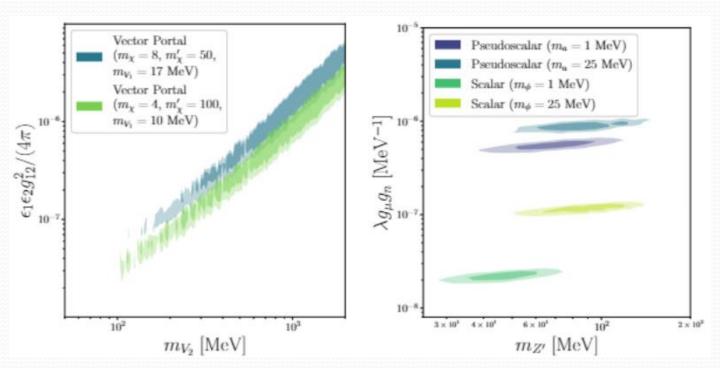
[MicroBooNE Collaboration, arXiv:2006.16883]

- The (earlier) MicroBooNE result constrains NC $\Delta \rightarrow N\gamma$ event rates more stringently, supporting that the MB excess requires a new physics interpretation!
- ☐ The later result shows no excess in the channels of a single electron + something.
- ☐ The MicroBooNE data may not be sensitive enough to the MB excess, yet, because of (~3 times) smaller POTs, (~6 times) smaller detector volume, (~3 times) smaller photon efficiency.


Example Long-Lived (Pseudo)scalar Models

$$\mathcal{L}_{S(P)} \supset g_{\mu}\phi(ia)\bar{\mu}\mu + g_n Z_{\alpha}'\bar{u}\gamma^{\alpha}u + \frac{\lambda}{4}\phi(a)F_{\mu\nu}'F^{\mu\nu} + \text{h.c.}$$

Example Fit


Example fit in the scalar scenario

[Dutta, DK, Thompson, Thornton, Van de Water, arXiv:2110.11944]

Long-lived (pseudo)scalar						
Scenario	$(m_{Z'}, m_{\phi/a})$	$(g_{\mu}g_n\lambda) [\text{MeV}^{-1}]$	$\chi^2/{ m dof}$			
Scalar	(49,1) MeV	2.2×10^{-8}	1.6			
Pseudoscalar	(85,1) MeV	5.9×10^{-7}	1.6			

Credible Regions

[Dutta, DK, Thompson, Thornton, Van de Water, arXiv:2110.11944]