Zurab Tavartkiladze

(Ilia State Univ, Tbilisi, Georgia)

Anomaly Free U(1)'s For Fermion Masses and Leptogenesis

Based on works: *Phys.Rev.D* 106 (2022) 11, 115002 (Z.T.)

(arXiv: 2209.14404)

arXiv: 2307.???? (A. Achelashvili, Z.T.)

July 18, 2023

High Energy Seminar Department of Physics, OSU, Stillwater

Outline

- Intro: Shortcomings, Problems & Puzzles of SM ->
 New Physics
- New U(1)Flavor model proposed:
 - Non-anomalous flavor sym. with economical setup → texture zeros;
 - several successful charged fermion mass patterns emerged
 - Interesting pattern for neutrino masses & mixings predictive neutrino sector—inverted hierarchical
 - Resonant Leptogenesis (by ~ TeV scale RHNs)
 - Summary

Some shortcomings / puzzles of SM:

Within the SM

- Hierarchies of Ch. fermion masses / mixings
- Neutrino oscillations masses / mixings unexplained
- Needed amount of the baryon asymmetry can't be generated

• • •

Charged fermion masses & mixings

Observed Noticeable Hierarchies:

$$\lambda_t \sim 1$$
, $\lambda_u : \lambda_c : \lambda_t \sim \lambda^8 : \lambda^4 : 1$

$$\lambda_b \sim \lambda_\tau \sim \frac{m_b}{m_t}$$
, $\lambda_d : \lambda_s : \lambda_b \sim \lambda^4 : \lambda^2$

With $\lambda = 0.2$

$$\lambda_e:\lambda_\mu:\lambda_\tau\sim\lambda^5:\lambda^2:1$$

$$V_{us} \approx \lambda$$
, $V_{cb} \approx \lambda^2$, $V_{ub} = \lambda^4 - \lambda^3$

What is origin of these hierarchies? Is there any relation or sum rule? Why three families?

Within SM no answer to these questions...

Extension With Flavor Symmetry

Flavor symmetry GF distinguishing families can explain hierarchies

Simplest possibility: GF=U(1)F (Froggatt, Nielsen'79)

$$U(1)_F$$
: $\phi_i \to e^{iQ(\phi_i)}\phi_i$

$$Q(F_i)=n_i\;, \qquad Q(F_i^c)=\bar{n}_i\;, \qquad Q(H)=0\;, \qquad Q(X)=-1$$
 'flavon'

With
$$n_i + \bar{n}_j \neq 0$$
 : coupling $F_i F_j^c \mathcal{H}$ forbidden!

$$\left(\frac{X}{M_*}\right)^{n_i+\bar{n}_j}F_iF_j^cH \longrightarrow \epsilon^{n_i+\bar{n}_j}F_iF_j^cH \qquad \begin{array}{c} \rightarrow \text{Suppressed} \\ \text{couplings emerge} \end{array}$$

$$\frac{\langle X \rangle}{M_*} \equiv \epsilon \ll 1$$
 - cut off scale (simplest possibility $M_* \sim M_{\rm Pl}$)

Several/multiple flavons also can be considered

Possible candidates for flavor U(1)_F

- Global U(1)_F is unattractive:
 - -- Spont. breaking → pseudo-Goldstones (phen. difficulties)
 - --Explicit breaking → against the 'rules' (selection criteria?)

Do gravity, non-perturbative effects respect global symmetries? Trustful setting?

Local U(1)_F:

Models with gauged U(1)_F are highly constrained due to anomaly cancellation condition

SM is anomaly free; But extra flavor U(1)_F requires additional care

-- Anomalous U(1) (of stringy origin)

(Dine, Seiberg, Witten'87)

GS mechanism for anomaly cancellation.

Conditions:

$$\frac{A_{YY1}}{2k_Y} = \frac{A_{221}}{k_2} = \frac{A_{331}}{k_3} = \frac{A_{111}}{3k_1} = \frac{A_{GG1}}{24}$$

Anomaly coefficients:

$$(Gravity)^2 \cdot U(1)_F : A_{GG1} = Tr[Q_{U(1)_F}]$$

$$U(1)_Y^2 \cdot U(1)_F : A_{YY1} = \sum_i Q_Y^2(i) Q_{U(1)_F}(i)$$

$$SU(1)_L^2 \cdot U(1)_F : A_{221} = \sum_i T_2(i) Q_{U(1)_F}(i) , \cdots$$

String Unification conds:

$$k_i g_i^2 = k_1 g_A^2 = 2g_{st}^2$$

 ◆ Anomalous U(1)_F as flavor symmetry → successful fermion hierarchies

(Ibanez, Ross'94; Binetruy, Ramond'95; Jain, Shrock'95 ...)

-- Anomaly free U(1)_F [not of 'stringy origin'] - Earlier Works

- Within MSSM, some anom. free U(1)F 's with successful YU,D,E (Dudas, Pokorski, Savoy, hp/9504292)
- •Within MSSM & SU(5) GUT, some examples/models of anom. free U(1)F 's (Mu-Chun Chen, et al, ph/0612017, 0801.0248)

Within SU(5) GUT: Z.T. PRD 87, 075026; PLB 706, 398-405 based on unified GUT+U(1)-part of flavor

Within GUTs become more non-trivial [multiplet's charges related]

Challenge to find simple anom. free U(1) x GGUT

Let's start by $U(1)_F \times G_{SM}$...

Search Anomaly Free U(1) ← embedding In Non-Abelian group

- **1):** 10[0] + 5*[0]
- 2): $10[\alpha] + 5*[-3\alpha] + 1[5\alpha]$
- 3): $10[\beta] + 5*[\beta] + 1[\beta] + 5[-2\beta] + 5'*[-2\beta] + 1'[4\beta]$

Finding 2) via SO(10)
$$\rightarrow$$
SU(5)xU(1)": 16= 10[1] + 5*[-3]+1[5]
(Flipped SU(5) type) 10=5[-2]+ 5*[2]

Finding 3) via E6->SO(10)xU(1)'→SU(5)xU(1)':

Finding 2) +3): Also possible Superposition of U(1)' and U(1)"

All other findings, such as E7, E8, SU(N>6) give extra SU(5) states

Superposition of U(1)' and U(1)": Qsup=aY'+bY"

Three Types of Charge selection Emerge:

B:
$$10a + 5* - 3a + 15a$$

C:
$$10a+b+5*a-3b+1a+5b+5-2a-2b+5'*-2a+2b+1'4a$$

One family can have A-type Charges, another one B-type, etc.

Acceptable combinations: ABB BBB

ABC BBC

For example, **ABB**:
$$100+5*0$$

 $10a+5*-3a+15a$

$$10a' + 5* - 3a' + 15a'$$

Hq+H*-q

Some selection rules ('guide'):

AAB: rejected because of two 10's same 0-chage

ACC: rejected for two 5-plets

In case of ABB, α and α' should be related $\alpha/\alpha'=m/n$, to avoid two U(1)s

Classify acceptable up type quark mass matrices...

Within GUTs charges of fermion states related →

→ Constrains & No much textures

Challenge to find simple anom. free $U(1)_F \times G_{GUT}$

Let's start by $U(1)_F \times G_{SM}$...

Model: SM Extension with $U(1)_F$

 $U(1)_F$ - gauge symmetry

X- scalar (flavon—the SM singlet), for $U(1)_F$ breaking

N_{1,2,...} - SM singlet fermions – RHN's

$$G_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$$
 non-trivial states

just those of SM Higgs doublet φ three families of matter $\{q, u^c, d^c, l, e^c\}_{i=1,2,3}$

Anomaly Constrain

- SM Anomalies are intact (i.e. vanish)

Other anomalies (direct $U(1)_F$ & mixed) must vanish:

$$(U(1)_F)^3: A_{111} = \sum_i Q_i^3$$

$$U(1)_Y \times (U(1)_F)^2: A_{Y11} = \sum_i Y_i Q_i^2$$

$$(U(1)_Y)^2 \times U(1)_F: A_{YY1} = \sum_i Y_i^2 Q_i$$

$$(SU(2)_L)^2 \times U(1)_F: A_{221} = \sum_i [Q_i(l_i) + 3Q_i(q_i)]$$

$$(SU(3)_c)^2 \times U(1)_F: A_{331} = \sum_i [2Q_i(q_i) + Q_i(u_i^c) + Q_i(d_i^c)]$$

$$(Gravity)^2 \times U(1)_F: A_{GG1} = \sum_i Q_i$$

a) hypercharge symmetry $U(1)_Y$

anomaly free U(1)'s

b) with RHN's $N_{1,2,...}$ gauged (B-L)

Family dependent $U(1)_Y$ and (B-L) and/or their superpositions

$$\bar{a}_i Y(f) + \bar{b}_i Q_{B-L}(f)$$

Automatically anomaly free

1) By requiring top quark renormalizable Yukawa coupling $_{\lambda_t} \sim 1$

Drawbacks:

- ightarrow also bottom and tau Yukawas allowed at renormalizable level $\operatorname{expectancy}\ \lambda_b, \lambda_{ au} \sim 1$
- 2) only with \bar{a}_i, b_i No much/desirable texture zeros.

Modification:

$$Q_i(f) = \bar{a}_i Y(f) + \bar{b}_i Q_{B-L}(f) + \Delta Q_i(f)$$

Such that: anomalies $A_{YY1}, A_{221}, A_{331}, A_{GG1}$ stay intact.

Four RHNs - $N_{1,2,3,4}$ and

$$\Delta Q_i(q) = \bar{q}_3\{0, 1, -1\} + \bar{q}_8\{1, 1, -2\}$$

$$\Delta Q_i(u^c) = \bar{u}_3\{0, 1, -1\} + \bar{u}_8\{1, 1, -2\}$$

$$\Delta Q_i(d^c) = \bar{d}_3\{1, -1, 0\} + \bar{d}_8\{1, 1, -2\}$$

$$\Delta Q_i(l) = \bar{l}_3\{1, -1, 0\} + \bar{l}_8\{1, 1, -2\}$$

$$\Delta Q_i(e^c) = 0$$

$$\Delta Q_i(N) = \bar{n}\{1, 1, 1, -3\}$$

will be enough for our purposes

Requirements upon selection of \bar{a}_i, \bar{b}_i \bar{n} $(\bar{q}_{3,8}, \cdots, \bar{l}_{3,8})$

- (i) Top Yukawa via $q_3u_3^c\varphi \rightarrow \lambda_t \sim 1$ All other Yukawas suppressed /hierarchical \rightarrow Naturally obtain desirable pattern
- (ii) Dirac and Majorana RHN couplings should naturally generate desirable neutrino oscillations
- (iii) Care must be taken for canceling anomalies

$$A_{111} = \sum Q_i^3 \qquad A_{Y11} = \sum Y_i Q_i^2$$

- (iv) Ratios of the states' charges should be rational
- → allow (phenomenologically required) couplings between them.

One solution - charge assignment

Normalization: Y(l) = 1 and $Q_{B-L}(q) = 1/3$

$$\bar{a}_i = \frac{1}{3} \{46, 43, 10\} , \quad \bar{b}_i = \frac{1}{3} \{-91, 35, 38\} ,$$

$$\{\bar{q}_3, \bar{u}_3, \bar{d}_3, \bar{l}_3\} = \frac{1}{3} \{-16, 7, -67/2, -3/2\} ,$$

$$\{\bar{q}_8, \bar{u}_8, \bar{d}_8, \bar{l}_8\} = \frac{1}{9} \{38, -41, 23/2, 51/2\} , \quad \bar{n} = -\frac{5}{3}$$

Table 1: $U(1)_F$ charge (Q) assignment for the states. $Q_X = 1$, $Q_{\varphi} = -7$.

						$\{N_1, N_2, N_3, N_4\}$
Q	$\{-11, -2, 0\}$	$\{26, 13, 7\}$	{-10,-1,-9}	${48, 6, -15}$	$\{-61, -17, 6\}$	$\{-32, 10, 11, 5\}$

1) All anomalies vanish

2) This Q selection gives nice textures → Natural understanding of hierarchies

Yukawa couplings are fixed by $U(1)_F$ charges:

$$(q_1, q_2, q_3) \begin{pmatrix} \overline{\varepsilon}^8 & \varepsilon^5 & \varepsilon^{11} \\ \overline{\varepsilon}^{17} & \overline{\varepsilon}^4 & \varepsilon^2 \\ \overline{\varepsilon}^{19} & \overline{\varepsilon}^6 & 1 \end{pmatrix} \begin{pmatrix} u_1^c \\ u_2^c \\ u_3^c \end{pmatrix} \varphi$$

$$(q_{1}, q_{2}, q_{3}) \begin{pmatrix} \varepsilon^{14} & \varepsilon^{5} & \varepsilon^{13} \\ \varepsilon^{5} & \overline{\varepsilon}^{4} & \varepsilon^{4} \\ \varepsilon^{3} & \overline{\varepsilon}^{6} & \varepsilon^{2} \end{pmatrix} \begin{pmatrix} d_{1}^{c} \\ d_{2}^{c} \\ d_{3}^{c} \end{pmatrix} \tilde{\varphi}$$

$$(l_{1}, l_{2}, l_{3}) \begin{pmatrix} \varepsilon^{6} & \overline{\varepsilon}^{38} & \overline{\varepsilon}^{61} \\ \varepsilon^{48} & \varepsilon^{4} & \overline{\varepsilon}^{19} \\ \varepsilon^{69} & \varepsilon^{25} & \varepsilon^{2} \end{pmatrix} \begin{pmatrix} e_{1}^{c} \\ e_{2}^{c} \\ e_{2}^{c} \end{pmatrix} \tilde{\varphi}$$

$$\frac{X}{M_{\rm Pl}} \equiv \varepsilon \ , \quad \frac{X^*}{M_{\rm Pl}} \equiv \bar{\varepsilon}$$

Hierarhical, good fit with: $\langle \varepsilon \rangle = \langle \overline{\varepsilon} \rangle \equiv \epsilon \approx 0.2$

Some elements $\approx 0 \rightarrow$ **Texture zeros:**

Some elements $\approx 0 \rightarrow$ **Texture zeros:**

$$(q_1, q_2, q_3) \begin{pmatrix} \overline{\varepsilon}^8 & \varepsilon^5 & \varepsilon^{11} \\ \overline{\varepsilon}^{17} & \overline{\varepsilon}^4 & \varepsilon^2 \\ \overline{\varepsilon}^{19} & \overline{\varepsilon}^6 & 1 \end{pmatrix} \begin{pmatrix} u_1^c \\ u_2^c \\ u_3^c \end{pmatrix} \varphi$$

$$(q_1, q_2, q_3) \begin{pmatrix} \varepsilon^{14} & \varepsilon^5 & \varepsilon^{13} \\ \varepsilon^5 & \overline{\varepsilon}^4 & \varepsilon^4 \\ \varepsilon^3 & \overline{\varepsilon}^6 & \varepsilon^2 \end{pmatrix} \begin{pmatrix} d_1^c \\ d_2^c \\ d_3^c \end{pmatrix} \tilde{\varphi}$$

$$(l_1, l_2, l_3) \begin{pmatrix} \varepsilon^6 & \overline{\varepsilon}^{38} & \overline{\varepsilon}^{61} \\ \varepsilon^{48} & \varepsilon^4 & \overline{\varepsilon}^{19} \\ \varepsilon^{69} & \varepsilon^{25} & \varepsilon^2 \end{pmatrix} \begin{pmatrix} e_1^c \\ e_2^c \\ e_3^c \end{pmatrix} \tilde{\varphi}$$

Some elements $\approx 0 \rightarrow$ **Texture zeros:**

$$(q_1, q_2, q_3) \begin{pmatrix} \overline{\varepsilon}^8 & \varepsilon^5 & \mathbf{0} \\ \mathbf{0} & \overline{\varepsilon}^4 & \varepsilon^2 \\ \mathbf{0} & \mathbf{0} & 1 \end{pmatrix} \begin{pmatrix} u_1^c \\ u_2^c \\ u_3^c \end{pmatrix} \varphi$$

$$(q_1, q_2, q_3) \begin{pmatrix} \mathbf{0} & \varepsilon^5 & \mathbf{0} \\ \varepsilon^5 & \overline{\varepsilon}^4 & \varepsilon^4 \\ \varepsilon^3 & \mathbf{0} & \varepsilon^2 \end{pmatrix} \begin{pmatrix} d_1^c \\ d_2^c \\ d_3^c \end{pmatrix} \tilde{\varphi}$$

$$(l_1, l_2, l_3) \left(egin{array}{ccc} arepsilon^6 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & arepsilon^4 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & arepsilon^2 \end{array}
ight) \left(egin{array}{c} e_1^c \\ e_2^c \\ e_3^c \end{array}
ight) ilde{arphi}$$

Neutrino Dirac & Majorana Couplings

$$(l_1, l_2, l_3) \begin{pmatrix} \overline{\varepsilon}^9 & \overline{\varepsilon}^{51} & \overline{\varepsilon}^{52} \\ \varepsilon^{33} & \overline{\varepsilon}^9 & \overline{\varepsilon}^{10} \\ \varepsilon^{54} & \varepsilon^{12} & \varepsilon^{11} \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix} \varphi$$

$$(N_1, N_2, N_3) \begin{pmatrix} \varepsilon^{64} & \varepsilon^{22} & \varepsilon^{21} \\ \varepsilon^{22} & \overline{\varepsilon}^{20} & \overline{\varepsilon}^{21} \\ \varepsilon^{21} & \overline{\varepsilon}^{21} & \overline{\varepsilon}^{22} \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix} M_{\text{Pl}}$$

Possible to forbid: $N_4 \rightarrow - N_4$ By reflection symm.

Neutrino Dirac & Majorana Couplings

$$(l_1, l_2, l_3) \begin{pmatrix} \overline{\varepsilon}^9 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \overline{\varepsilon}^9 & \overline{\varepsilon}^{10} \\ \mathbf{0} & \varepsilon^{12} & \varepsilon^{11} \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix} \varphi$$

$$(N_1, N_2, N_3) \begin{pmatrix} \mathbf{0} & \varepsilon^{22} & \varepsilon^{21} \\ \varepsilon^{22} & \overline{\varepsilon}^{20} & \overline{\varepsilon}^{21} \\ \varepsilon^{21} & \overline{\varepsilon}^{21} & \overline{\varepsilon}^{22} \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix} M_{\text{Pl}}$$

These zeros lead to the Prediction(s)

Quark Sector

Basis:
$$q^T Y_U u^c h_u$$

$$q^T Y_D d^c h_d$$

Parameterization:

$$Y_U \simeq \begin{pmatrix} a_1' \epsilon^{\circ} & a_1 \epsilon^{\circ} & 0 \\ 0 & a_2 \epsilon^{4} & \epsilon^{2} \\ 0 & 0 & 1 \end{pmatrix} \lambda_t^0 ,$$

$$Y_D \simeq \begin{pmatrix} e^{-i\eta_1} & 0 & 0 \\ 0 & e^{-i\eta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & b_1 \epsilon^3 & 0 \\ b_1' \epsilon^3 & b_2 \epsilon^2 & b_2' \epsilon^2 \\ 0 & 0 & 1 \end{pmatrix} \kappa_b \epsilon^2$$

 $\eta_{1,2}$ do not contribute to masses. Relevant for CP

Hierarchical Yukawas → accurate analytic relations:

$$\lambda_t = \lambda_t^0 [1 + \mathcal{O}(\epsilon^4)] \qquad \lambda_b = \kappa_b \epsilon^2 [1 + \mathcal{O}(\epsilon^4)]$$

$$\frac{\lambda_u}{\lambda_t} \simeq \frac{a_1' \epsilon^8}{\sqrt{1 + (a_1 \epsilon / a_2)^2}}, \qquad \frac{\lambda_c}{\lambda_t} \simeq a_2 \epsilon^4 \sqrt{1 + (a_1 \epsilon / a_2)^2}$$

$$\frac{\lambda_d}{\lambda_b} \simeq \frac{b_1 b_1' \epsilon^4}{\sqrt{b_2^2 + (b_1^2 + b_1'^2) \epsilon^2}}, \qquad \frac{\lambda_s}{\lambda_b} \simeq \epsilon^2 \sqrt{b_2^2 + (b_1^2 + b_1'^2) \epsilon^2}$$

CKM elements:

$$|V_{us}| = \left| c_u s_d e^{i\eta_1} - s_u c_d e^{i\eta_2} \right|$$

$$|V_{cb}| = c_u \epsilon^2 \frac{|1 - e^{i\eta_2} b_2' (1 + b_2^2 \epsilon^4)|}{\sqrt{1 + \epsilon^4} \sqrt{1 + b_2'^2 \epsilon^4}} + \mathcal{O}(\epsilon^8) , \qquad \frac{|V_{ub}|}{|V_{cb}|} = \tan \theta_u = \frac{a_1}{a_2} \epsilon$$

$$\overline{\rho} + i\overline{\eta} = -\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} = \frac{c_u c_d e^{i\eta_1} + s_u s_d e^{i\eta_2}}{c_d s_u e^{i\eta_1} - c_u s_d e^{i\eta_2}} \tan \theta_u$$

$$\tan \theta_u = \frac{a_1}{a_2} \epsilon , \qquad \tan 2\theta_d = \frac{2b_1 b_2 \epsilon}{b_2^2 - (b_1^2 - b_1'^2) \epsilon^2}$$

Help to find fit

Renormalization from High scale to weak scale

$$\begin{split} \frac{\lambda_{u,c}}{\lambda_t}\bigg|_{M_t} &= \eta_{u,c} \left.\frac{\lambda_{u,c}}{\lambda_t}\right|_{\Lambda} \;, \quad \left.\frac{\lambda_{d,s}}{\lambda_b}\right|_{M_t} = \eta_{d,s} \left.\frac{\lambda_{d,s}}{\lambda_b}\right|_{\Lambda} \;, \\ V_{\alpha\beta}|_{M_Z} &= \eta_{mix} \left.V_{\alpha\beta}\right|_{\Lambda} \;, \quad \text{if} \quad (\alpha\beta) = (ub,cb,td,ts) \\ V_{\alpha\beta}|_{M_Z} &= V_{\alpha\beta}|_{\Lambda} \;, \quad \text{if} \quad (\alpha\beta) = (ud,us,cd,cs,tb) \;, \end{split}$$

For:

$$M_t = 172.5 \text{ GeV and } \alpha_3(M_Z) = 0.1179$$

 $\eta_{u,c} \simeq 1.1262 + 0.00187 \cdot \ln\left(\frac{\Lambda}{2 \cdot 10^{16} \text{GeV}}\right),$
 $\eta_{d,s} \simeq 0.8916 - 0.00143 \cdot \ln\left(\frac{\Lambda}{2 \cdot 10^{16} \text{GeV}}\right),$
 $\eta_{mix} \simeq 0.89157 - 0.001433 \cdot \ln\left(\frac{\Lambda}{2 \cdot 10^{16} \text{GeV}}\right),$

- the interpolated expressions which work pretty well for $10^{15} \text{GeV} < \Lambda < M_{\text{Pl}}$.

Fit - Quark sector

input:
$$M_t = 172.5 \text{ GeV}, \qquad m_b(m_b) = 4.18 \text{ GeV}$$

$$\epsilon = 0.21, \quad \{a_1, a_1', a_2\} = \{0.6974, \ 1.7065, \ 1.6606\}, \quad \{\eta_1, \eta_2\} = \{3.01985, \ -1.3954\},$$

$$\{b_1, b_1', b_2, b_2'\} = \{0.47834, \ 0.54541, \ 0.45448, \ 0.59088\}.$$

output:

$$(m_u, m_d, m_s)$$
 (2 GeV) = (2.16, 4.67, 93) MeV, $m_c(m_c) = 1.27$ GeV

$$\mu = M_Z$$
: $|V_{us}| = 0.225$, $|V_{cb}| = 0.04182$, $|V_{ub}| = 0.00369$, $\overline{\rho} = 0.159$, $\overline{\eta} = 0.3477$

All results given above are in perfect agreement with experiments

Lepton Sector

$$Y_E \simeq \begin{pmatrix} c_1 \epsilon^4 & 0 & 0 \\ 0 & c_2 \epsilon^2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \kappa_\tau \epsilon^2$$

input:

$$M_{\tau} = 1.777 \; \text{GeV}$$

at
$$\mu = \Lambda$$
, $\{c_1, c_2\} \simeq \{0.1437, 1.335\}$

output:

$$M_e = 0.511 \text{ MeV}, \quad M_{\mu} = 105.66 \text{ MeV},$$

Neutrino Sector

No important contribution from Y_E

$$Y_E^{diag}$$
 basis \rightarrow Lepton mixing matrix U
$$M_{\nu} = PU^*P'M_{\nu}^{\mathrm{Diag}}U^{\dagger}P,$$

$$U = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$P = \operatorname{Diag}\left(e^{i\omega_1}, e^{i\omega_2}, e^{i\omega_3}\right), \quad P' = \operatorname{Diag}\left(1, e^{i\rho_1}, e^{i\rho_2}\right)$$

Neutrino Dirac & Majorana Matrices

$$m_D \simeq \begin{pmatrix} A\epsilon^9 & 0 & 0 \\ 0 & B_1\epsilon^9 & C_1\epsilon^{10} \\ 0 & B_2\epsilon^{12} & C_2\epsilon^{11} \end{pmatrix} v , \quad M_R \simeq \begin{pmatrix} 0 & a\epsilon^2 & d\epsilon \\ a\epsilon^2 & b & c\epsilon \\ d\epsilon & c\epsilon & \epsilon^2 \end{pmatrix} \bar{c}M_{Pl}\epsilon^{20}$$

$$M_{\nu} \simeq -m_D M_R^{-1} m_D^T \simeq \begin{pmatrix} \beta & \gamma & \gamma' \\ \gamma & \alpha^2 & \alpha \\ \gamma' & \alpha & 1 \end{pmatrix} \bar{m}_{\perp}$$

$$M_{\nu}^{(2,2)}M_{\nu}^{(3,3)} - (M_{\nu}^{(2,3)})^2 = 0$$

Relations→

$$\tan^2 \theta_{13} = \frac{m_3}{m_2} \left| s_{12}^2 e^{i\rho_1} + \frac{m_2}{m_1} c_{12}^2 \right|$$

$$2\delta = \pi - \rho_2 + \operatorname{Arg}\left(s_{12}^2 e^{i\rho_1} + \frac{m_2}{m_1} c_{12}^2\right)$$

Predict inverted hierarchical neutrinos!

(Z.T. PRD 87, 075026)

$$\cos \rho_1 = \frac{m_1^2 m_2^2 \tan^4 \theta_{13} - m_3^3 (m_1^2 s_{12}^4 + m_2^2 c_{12}^4)}{2m_1 m_2 m_3^2 s_{12}^2 c_{12}^2}$$
$$2\delta = \pm \pi - \rho_2 + \operatorname{Arg} \left(s_{12}^2 e^{i\rho_1} + \frac{m_2}{m_1} c_{12}^2 \right).$$

is incompatible with normal hierarchical neutrino masses.

(IH) in neutrino masses
$$0.001129 \text{ eV} \lesssim m_3 \lesssim 0.002833 \text{ eV}$$

 $0.1002 \text{ eV} \lesssim \sum m_i \lesssim 0.1021$

$$(0\nu\beta\beta)$$
 parameter $m_{\beta\beta} = \left| c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{i\rho_1} + s_{13}^2 m_3 e^{i(2\delta + \rho_2)} \right|$

 $0.01864 \text{ eV} \lesssim m_{\beta\beta} \lesssim 0.0483 \text{ eV}$

both parameters $\sum m_i$ and $m_{\beta\beta}$ are unequivocally determined by the m_3 's values.

correlation between $\sum m_i$ and $m_{\beta\beta}$,

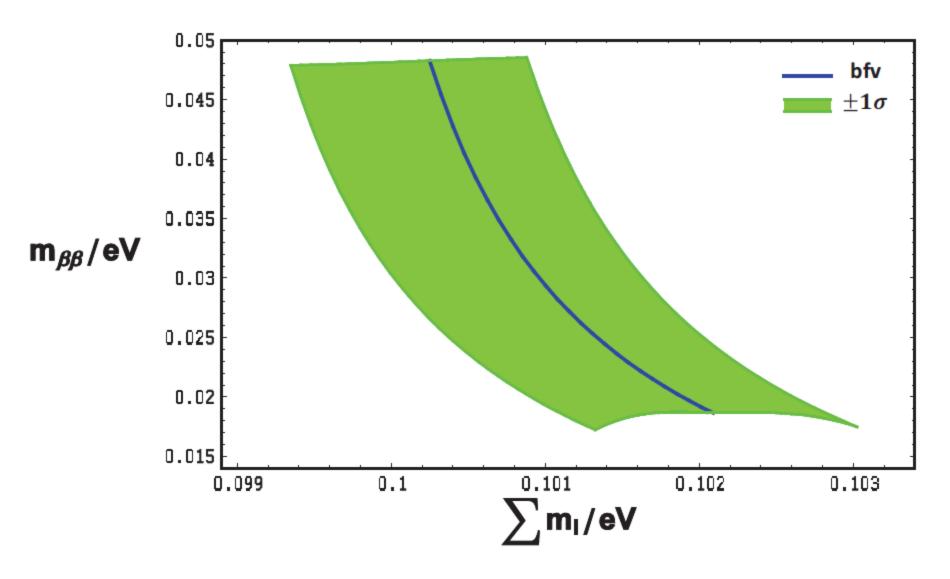


Figure 1: Correlation between $\sum m_i$ and $m_{\beta\beta}$. Solid blue line corresponds to the bfv's of the oscillation parameters [1,2]. Green area corresponds to the cases with oscillation parameters within the 1σ deviations.

All hierarchies, needed values Realized by original parameters' natural values:

With input:

 ${A, B_1, B_2, C_1, C_2} \simeq {2.0236, 2.0236, 1.6189, 2.4283, -0.8094}$

 $\{a,b,c,d,\bar{c}\} \simeq \{3.2672e^{i1.5473},0.79405e^{i0.0053733},0.89097e^{i0.0028735},0.15853e^{1.5586},0.56333e^{2.9194}\}$

→ Perfect Fit:

 $\{\sin^2\theta_{12}, \sin^2\theta_{23}, \sin^2\theta_{13}\} = \{0.3035, 0.57, 0.02235\}$

 $\Delta m_{\text{sol}}^2 = m_2^2 - m_1^2 = 7.39 \cdot 10^{-5} \text{eV}^2, \quad \Delta m_{\text{atm}}^2 = m_2^2 - m_3^2 = 2.492 \cdot 10^{-3} \text{eV}^2$

 $\{m_1, m_2, m_3\} = \{0.049197, 0.049942, 0.0015\} \text{eV},$

$$\{\delta, \rho_1, \rho_2\} = \{276^\circ, 91.69^\circ, 11.49^\circ\}, \quad \omega_{1,2,3} = 0$$

 $\{M_{N_1}, M_{N_2}, M_{N_3}\} \simeq \{1.6, 953.5, 32480\} \text{GeV}$

Suppressed Additional contribution to $(0\nu\beta\beta)$ parameter

$$\left| \sum_{i=1}^{3} U_{ei}^{2} m_{i} P_{i}^{'*} + \frac{M_{N_{1}}}{1 + M_{N_{1}}^{2} / \langle p^{2} \rangle} U_{eN_{1}}^{2} \right| =$$

$$\left| e^{-0.421i} 0.0362 \,\text{eV} + \frac{e^{-0.151i} 2.76 \cdot 10^{-11} M_{N_{1}}}{1 + M_{N_{1}}^{2} / \langle p^{2} \rangle} \right| = 0.0368 \,\text{eV}$$

$$\left(\text{for } \langle p^{2} \rangle = (200 \,\text{MeV})^{2} \right)$$
With $M_{N_{1}} \simeq 1.6 \,\text{GeV}$, and mixing $|U_{eN_{1}}|^{2} \simeq 2.76 \cdot 10^{-11}$

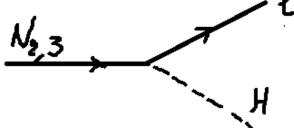
Additional contribution: within (0.5-1.8)%, i.e. negligible.

for
$$\langle p^2 \rangle = (100 - 200 \,\text{MeV})^2$$

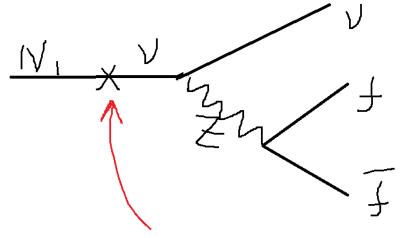
Consistency (with BBN)

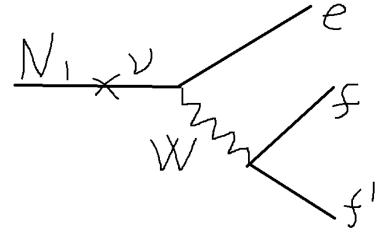
$$M_{N_{1,2,3,4}} = \{1.6, 2 \cdot 10^3, 5 \cdot 10^4, 4 \cdot 10^{11}\}$$
 GeV

 $N_{2,3}$ Decay quickly



N_1 Decays – mixing with ν 's





$$|U_{iN_1}|^2 \simeq \{2.76, 1.29, 1.09\} \cdot 10^{-11}$$

$$\Gamma(N_1) = \frac{1}{\tau_{N_1}} \simeq \frac{G_F^2 M_{N_1}^5}{16\pi^3} \left(1.37 |U_{1N_1}|^2 + 1.35 |U_{2N_1}|^2 + 0.487 |U_{3N_1}|^2 \right) \simeq \frac{1}{0.0038 \, \text{s.}}$$

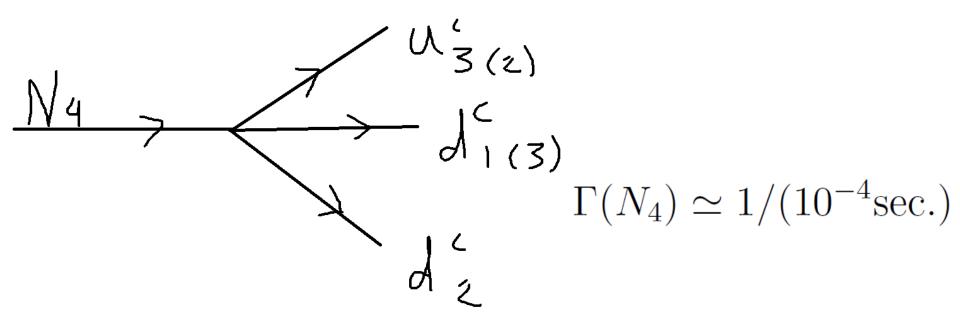
Consistency (with BBN)

N_4 Decays – due to d=6 operator couplings

$$\frac{1}{M_{Pl}^2} \left(\bar{\epsilon} (N_4 u_3^c) (d_1^c d_2^c) + \epsilon (N_4 u_2^c) (d_2^c d_3^c) \right)$$

Consistent with symmetry

$$N_4 \to -N_4$$
$$(q, u^c, d^c) \to -(q, u^c, d^c)$$



Baryon Asymmetry

Generation of
$$\left. \frac{n_B - n_{\bar{B}}}{n_\gamma} \approx 10^{-10} \right|$$
 asymmetry

Also requires SM extension

Having extension with Right handed neutrinos

B-asym. Through leptogenesis

(Fukugita & Yanagida'1986)

Leptogenesis

RHNs →L, CP viol → Leptogenesis (Fikugita, Yanagida'86)

By out of equilibrium N-decays

$$N \rightarrow h l:$$

$$\begin{array}{c} N \\ \hline \\ Z \end{array} + \begin{array}{c} N \\ \hline \\ Z \end{array}$$

In our considered model: Ligthest RHN mass < TeV

Hierarchical neutrinos for leptogenesis require $M_R \ge 10^9 GeV$ (Davidson-Ibarra'02

bound)

Hierarchical RHNs will not work for the considered case ...

Alternatively:

 Quasi Degenerate RHNs → Resonant Leptogenesis

Flanz et al'96 Pilaftsis'97 Underwood'03

Allows low MR

With degenerate N's, CP asymmetry:

$$\epsilon_1 = \frac{\operatorname{Im}(\hat{Y}_{\nu}^{\dagger} \hat{Y}_{\nu})_{21}^2}{(\hat{Y}_{\nu}^{\dagger} \hat{Y}_{\nu})_{11} (\hat{Y}_{\nu}^{\dagger} \hat{Y}_{\nu})_{22}} \frac{(M_2^2 - M_1^2) M_1 \Gamma_2}{(M_2^2 - M_1^2)^2 + M_1^2 \Gamma_2^2}$$

Pilaftsis & Underwood'03

Has maximum with $M_1=M\,|1-\delta_N\,|, \quad M_2=M\,|1+\delta_N\,|, \quad \delta_N\ll 1$

For arbitrary M!

Select parameters in M_R matrix \rightarrow

- To get: quasi deg. Two RHNs
- then find: Dirac Yukawas which accommodate neutrino sector
- investigate resonant leptogenesis

It works!

 M_R Diagonalization and Spectrum

$$Y_{\nu}^{0} = \begin{pmatrix} \bar{A} & 0 & 0 \\ 0 & \bar{B}_{1} & \bar{C}_{1} \\ 0 & \bar{B}_{2} & \bar{C}_{2} \end{pmatrix}, \quad M_{R}^{0} = \begin{pmatrix} 0 & \tilde{n}_{2} & \tilde{n}_{3} \\ \tilde{n}_{2} & \tilde{n}_{1} & \tilde{n}_{4} \\ \tilde{n}_{3} & \tilde{n}_{4} & 1 \end{pmatrix} \bar{M}^{0}$$

Convenient basis:
$$Y_{\nu} = \begin{pmatrix} A & 0 & 0 \\ 0 & B_1 & C_1 e^{i\varphi_1} \\ 0 & B_2 & C_2 e^{i\varphi_2} \end{pmatrix}$$

$$M_R = \begin{pmatrix} 0 & n_2 & n_3 \\ n_2 & n_1 e^{i\varphi} & 0 \\ n_3 & 0 & 1 \end{pmatrix} \bar{M}, \text{ With } n_3 \ll 1, \text{ for } n_2 \gg |n_1|, n_3^2 \longrightarrow$$

$$M_{N_1} \simeq \left(1 - \frac{1}{2n_2}|n_1 - n_3^2|\right) \bar{M}n_2 , \quad M_{N_2} \simeq \left(1 + \frac{1}{2n_2}|n_1 - n_3^2|\right) \bar{M}n_2$$

$$M_{N_3} \simeq \left(1 + n_3^2\right) \bar{M} .$$

Lighter N_1 and N_2 are quasi-degenerate!

Preliminary Results

One possible parameter selection:

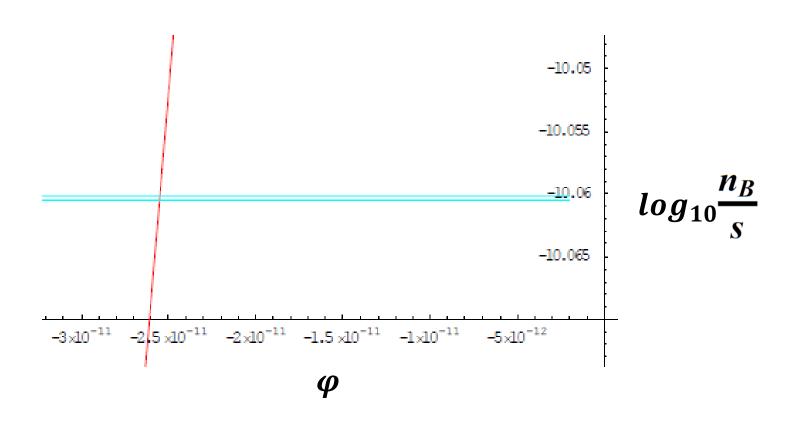
$$Y_{\nu} = \begin{pmatrix} 7.47 \cdot 10^{-7} & 0 & 0 \\ 0 & 3.57 \cdot 10^{-7} & -5.99 \cdot 10^{-7} - 5.44 \cdot 10^{-7}i \\ 0 & 4.33 \cdot 10^{-7} & 3.89 \cdot 10^{-8} + 4.49 \cdot 10^{-8}i \end{pmatrix}$$

$$M_R = \begin{pmatrix} 0 & 250 & 433.013 \\ 250 & 75 - 9.38 \cdot 10^{-10} i & 0 \\ 433.013 & 0 & 2500 \end{pmatrix} \times \mathbf{GeV}$$

$$M_1 \cong M_2 \cong 250 \text{ GeV}$$

Preliminary Results

Baryon Asymmetry:



How natural are couplings & scales?

 $U(1)_F$ symmetry gives:

$$Y_{\nu} \simeq \begin{pmatrix} \tilde{a}\epsilon^9 & 0 & 0 \\ 0 & \tilde{b}_1\epsilon^{10} & \tilde{c}_1\epsilon^9 \\ 0 & \tilde{b}_2\epsilon^{11} & \tilde{c}_2\epsilon^{12} \end{pmatrix}, \quad M_R \simeq \begin{pmatrix} 0 & \hat{n}_2\epsilon & \hat{n}_3\epsilon^2 \\ \hat{n}_2\epsilon & \hat{n}_1\epsilon^2 & \epsilon \\ \hat{n}_3\epsilon^2 & \epsilon & 1 \end{pmatrix} \hat{n}M_{Pl}\epsilon^{20}$$

From the neutrino sector & leptogenesis,

For $\epsilon = 0.21$ we need:

$$\tilde{a}\simeq 0.94,\quad b_1\simeq 2.1,\quad b_2\simeq 1.2,\quad \tilde{c}_1\simeq 0.75,\quad \tilde{c}_2\simeq 8$$

$$\hat{n}_1\simeq 0.68,\quad \hat{n}_2\simeq 0.48,\quad \hat{n}_3\simeq 3.9 \Longrightarrow \text{Natural values}$$

$$\hat{n}\simeq 0.037 \Longleftrightarrow \text{Scales unexplained...}$$

$$\hat{n}M_{Pl}\simeq 9\cdot 10^{16}~\text{GeV}$$

Accurate quasi-degeneracy of RHNs requires tunings

SUMMARY

- SM extension with U(1)Flavor model proposed:
- Found Non-anomalous ch. selection → texture zeros;
- Successful ch. fermion mass hierarchies /mixings;
- Desirable Neutrino (inverted hierarchical) oscillations
- Satisfactory low scale resonant leptogenesis

Interesting to extent: to GUTs [like SU(5), SO(10)] – more predictive?

Thank You

Backup Slides

Charged fermion masses & mixings

Observed Noticeable Hierarchies:

$$\lambda_t \sim 1$$
, $\lambda_u : \lambda_c : \lambda_t \sim \lambda^8 : \lambda^4 : 1$

$$\lambda_b \sim \lambda_\tau \sim \frac{m_b}{m_t} \tan \beta$$
, $\lambda_d : \lambda_s : \lambda_b \sim \lambda^4 : \lambda^2$

$$\lambda_e : \lambda_\mu : \lambda_\tau \sim \lambda^5 : \lambda^2 : 1$$

With $\lambda = 0.2$

$$V_{us} \approx \lambda$$
, $V_{cb} \approx \lambda^2$, $V_{ub} = \lambda^4 - \lambda^3$

What is origin of these hierarchies? Is there any relation or sum rule? Why three families?

Within SM no answer to these questions...

Evidences for New Physics: Neutrino Data

Origin of these scales and mixings?

Unexplained in SM

$$\leftarrow \mathbf{m}_{\nu} \lesssim 10^{-4} \text{ eV}$$

$$m_{\nu} \sim \frac{M_{EW}^2}{M_{Pl}}$$

Without New Physics

Neutrino masses via see-saw

+ RHN - **V**R

- Oscillations
- $V^c \equiv N \square (1, 1, 0)$
- → Leptogenesis

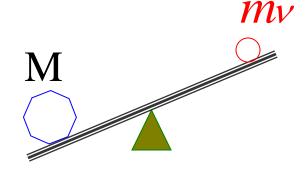
SM singlet

$$lN\langle H
angle$$

 $MNN \rightarrow \Delta L=2$ Lepton number viol.

$$egin{pmatrix} 0 & \langle H
angle \ \langle H
angle & M \end{pmatrix} & m_
u \sim rac{\langle H
angle^2}{M}$$

$$m_{\nu} \sim \frac{\langle H \rangle^2}{M}$$



$$M_N \simeq M$$

$$M \sim 10^{14} \text{ GeV} \rightarrow m_{\nu} \sim \text{few} \cdot 0.01 \text{ eV}$$

Some related works:

- -- Within MSSM, anom. free U(1)_F 's with successful Y_{U,D,E}

 Dudas, Pokorski, Savoy, hp/9504292;
- -- Within MSSM & SU(5) GUT, some examples/models of anom. free U(1)_F 's: *Mu-Chun Chen, et al, ph/0612017, 0801.0248;*

Backup Slides for Leptogenesis

No apriory reason to expect Matter-atimatter asymmetry...

Early Universe → **50%** -- **50%**

$$\frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 10^{-10}$$

(with units ny = 1)

For 10.000.000.000 Baryons ←→ 9.999.999.999 antiBaryons

How/why such asymmetry Emerges???

Sakharov Conditions (1967) *for Baryogenesis*

- 1. B-number violation
- 2. C- and CP-violation
- 3. Out of thermal Equalibrium (necessary conditions)
- -- SM meets 3 conds. But too small asymmetry!
- -- GUT ←→ sphaleron washout problem (?)
 - -- see Babu & Mohapatra'2012 GUT baryogenesis revamped!

Needed Physics Beyond SM (Standard Model)

-- Neutrino Sector

-- Baryon asymmetry

. . .

- -- Neutrino mass vv-operator → ΔL≠0
 - Sphalerons $\Delta(B-L)=0 \rightarrow \Delta B \neq 0$ (good!)

Remaining 2 conds. ~ details of Leptogenesis (Fukugita & Yanagida'1986)