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Timmons et. al [2007] data

xmj = brown fat cell expression measurement for gene m on jth
microarray

ymk = white fat cell expression measurement for gene m on k th
microarray

m xm1 xm2 ... xm5 ym1 ym2 ... ym8

1 1.22 1.66 ... 2.33 5.64 1.79 ... 4.05
2 3.57 19.22 ... 11.89 5.17 29.49 ... 11.26
...

...
...

. . .
...

...
...

. . .
...

12488 2.52 10.91 ... 22.67 10.70 7.35 ... 12.81

Goal: compare brown fat cell measurements to white for each
gene
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Boxplots for 5 genes
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Model and Hypotheses

Model:
Xm1, Xm2, ..., Xm5

i.i.d.∼ Fm(·)

Ym1, Ym2, ..., Ym8
i.i.d.∼ Fm(· − θm)

Hypotheses:

Hm0 : θm = 0, Fm ∈ FNORM vs. Hm1 : θm 6= 0, Fm ∈ FNORM

θm = 0 means genem not differentially expressed

θm 6= 0 means genem is differentially expressed
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Decision Functions

Test statistics

T (x m, y m) =
x̄m − ȳm

Spm

√

1
5 + 1

8

PTm(x m, y m) = 2[1 − T11(|T (x m, y m)|)]

Decision Function

δp(x m, y m; α) = I (PTm(x m, y m) ≤ α)

Joshua D. Habiger P-Values for Multiple Testing Procedures



Motivation
Randomized P-Value Statistics for MTPs

Compound P-value Statistics for MTPs
Concluding Remarks

A Quick Analysis
Problems with analysis
Multiple Testing Procedures

Testing with P-values
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α = .05 allows for 2879 “DISCOVERIES” !!!
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A closer look

All Hm0 true => expect 624 False Discoveries!

Consequences
Time (and grant money!?!) wasted

Solutions: Control global error rate
FWER = Pr(#FD ≥ 1)

FDR = E
[

#FD
max{1,#D}

]

. . . and many more
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P-Value based MTPs

Let P = (P1, P2, ..., PM) be P-values for testing
H10, H20, ..., HM0

Define a P-value based MTP by

δ : [0, 1]M → {0, 1}M

where δ(P) = (δ1(P), δ2(P), ..., δM(P))
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Examples

Let P(1) ≤ P(2) ≤ ... ≤ P(M) be ordered P-values

Sequential Sidak (Duduit and van der Laan [2008])
δm(P; α) = I

(

Pm ≤ 1 − (1 − α)
1

M−k +1

)

, where

k ≡ k(P) = max
{

m : P(j) ≤ 1 − (1 − α)
1

M−j+1 , ∀j ≤ m
}

Benjamini and Hochberg (1995)
δm(P; α) = I(Pm ≤ k α/M), where

k ≡ k(P) = max
{

j : P(j) ≤
jα
M

}
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Application of MTPs: α = .05
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Problems/Questions

The fine print
Uniformity condition
Independence condition

T -test P-values/ Nonparametric rank based P-values
and the fine print
Questions

Could we define more robust P-value statistics
satisfying the conditions? (relax normality assumption)

Could we define more efficient P-value statistics
satisfying the conditions?
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Randomized P-value Statistics for MTPs
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The Idea

Use randomization to allow for nonparametric discrete
P-values to be continuous
Then P-values will satisfy uniformity condition and
inherit robust properties

Joshua D. Habiger P-Values for Multiple Testing Procedures



Motivation
Randomized P-Value Statistics for MTPs

Compound P-value Statistics for MTPs
Concluding Remarks

Setup
Result
Example
Application to MTPs

Data description

Assume X ∼ F , let F be a model for F and let
U ∼ [0, 1] be independent of X .

Let F0 be null sub-model for F under H0. i.e.
H0 : F ∈ F0 and F1 an alternative sub-model

Model example in this section
X1, X2, ..., Xn1

i.i.d.∼ F (·) and Y1, Y2, ..., Yn2

i.i.d.∼ F (· − θ) with
F = {all continuous d.f.s}
F0 = {F ∈ F : θ ≥ 0} and F1 = {F ∈ F : θ < 0}
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Valid Decision Processes

Decision function δ(x , u; η) ∈ {0, 1} where δ = 1(0)
means reject(accept) H0

Allowing size index η to vary, we form decision
process

∆ = {δ(X , U; η) : η ∈ [0, 1]}
(also assume t 7→ δ(x , u; t) nondecreasing and right cont. a.e.
[F ]∀F ∈ F)

Definition : The decision process ∆ is F0-size-valid if
supF∈F0

E(F ,U)[δ(X , U; η)] = η for every η ∈ [0, 1].
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Uniform P-Value Statistics

P∆(X , U) = inf{η ∈ [0, 1] : δ(X , U; η) = 1}

Definition : The P-value statistic P∆(X , U) is
F0-uniform if

sup
F∈F0

Pr(F ,U)[P∆(X , U) ≤ t ] = t

for every t ∈ [0, 1].
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Valid vs. Uniform

Theorem : P∆(X , U) is F0-uniform if and only if ∆ is
F0-size-valid.

Proof: Show [P∆(X , U) ≤ t ] = [δ(X , U; t) = 1] a.e
[F ]∀F ∈ F

Use: We can usually define φ(x ; η) ∈ [0, 1] so that
supF∈F0

EF [φ(x ; η)] = η.

Then define δ(X , U; η) = I(U ≤ φ(X ; η)) and get P∆
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Randomized Wilcoxon test function

Randomized Wilcoxon test function:

φWR(x , y ; η) =







1 if W (x , y ) < k(η)
γ(η) if W (x , y ) = k(η)
0 if W (x , y ) > k(η)

k(η), γ(η) are chosen s.t. supF∈F0
EF [φ(x , y ; η)] = η
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Randomize Wilcoxon P-value

Decision function:

δWR(x , y , u; η) = I[u ≤ φW (x , y ; η)]

= I[W (x , y ) < k(η)] + I[u ≤ γ(η)]I[W (x , y ) = k(η)]

P-value for ∆WR is

P∆WR(x , y , u; η) = inf{η ∈ [0, 1] : δW (x , y , u; η) = 1}

= Wn1,n2[W (x , y ) − 1] + uwn1,n2[W (x , y )]
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P-value distribution: F=Normal

50,000 sets of X1, .., X5, Y1, ..., Y5
i .i .d .∼ F (·) are

generated and Wilcoxon, randomized Wilcoxon, and
T -test P-values are computed.
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P-value distribution: F=Cauchy

50,000 sets of X1, .., X5, Y1, ..., Y5
i .i .d .∼ F (·) are

generated and Wilcoxon, randomized Wilcoxon, and
T -test P-values are computed.
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BH Procedure for F = normal

Same data except now θ1 = ... = θ900 = 0 and
θ901 = ... = θ1000 = 2
BH procedure applied at α using P-values from T, Wilcoxon, and
Randomized Wilcoxon tests.

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

alpha

F
D

R

0.0 0.1 0.2 0.3 0.4 0.5

0
50

10
0

15
0

alpha

D
is

co
ve

rie
s

normal

Joshua D. Habiger P-Values for Multiple Testing Procedures



Motivation
Randomized P-Value Statistics for MTPs

Compound P-value Statistics for MTPs
Concluding Remarks

Setup
Result
Example
Application to MTPs

BH Procedure for F = Cauchy

Same data except now θ1 = ... = θ900 = 0 and
θ901 = ... = θ1000 = 2
BH procedure applied at α using P-values from T, Wilcoxon, and
Randomized Wilcoxon tests.

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

alpha

F
D

R

0.0 0.1 0.2 0.3 0.4 0.5

0
20

60
10

0

alpha

D
is

co
ve

rie
s

cauchy

Joshua D. Habiger P-Values for Multiple Testing Procedures



Motivation
Randomized P-Value Statistics for MTPs

Compound P-value Statistics for MTPs
Concluding Remarks

Setup
Result
Example
Application to MTPs

Some Remarks

Randomized Wilcoxon P-value allows for valid
MTPs so long as F continuous

T -test P-values only valid for normal model
Nonrandomized Wilcoxon P-values are never Uniform

What about efficiency?
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The idea

So far each P-value is simple
i.e. if Xm is data for testing Hm0, then P∆m (Xm)

What about compound P-value statistics?
i.e. for X = (X1, X2, ..., XM), compute P∆m (X )

How can we define compound P-value statistics and
ensure uniform and independence conditions
satisfied?
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Data Description

Let X ∈ X and X ∼ F .

X =









X11 X12 ... X1N

X21 X22 ... X2N
...

...
. . .

...
XM1 XM2 .. XMN









For A ⊆ M = {1, 2, ..., M}, B ⊆ N = {1, 2, ..., N}
denote by

X [A, B ] = (Xmn : m ∈ A, n ∈ B)

We write X [m, ] ≡ X [{m},N ] to refer to a row m and
X [, n] for column n

Joshua D. Habiger P-Values for Multiple Testing Procedures
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Model

Model: X ∼ F ∈ F
Example for this section - N microarrays are i.i.d.
according to an M-dimensional multivariate normal
distribution

F = {F : F (x) =
∏

n∈N

G(x [, n]), G = MVN(µM , ΣM×M)}

Sub-models: Fm0 ⊆ F and Fm1 ⊆ F
Ex. mean expression level for gene m is 0. i.e.

Fm0 = {F ∈ F : µm = 0}

Joshua D. Habiger P-Values for Multiple Testing Procedures
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Hypotheses

Hypotheses

Hm0 : F ∈ Fm0 vs. Hm1 : F ∈ Fm1

Global null model/hypothesis: For M0 ⊂ M,

HM0 : F ∈ FM0 = ∩m∈M0Fm0

Ex. mean expression level for genes 1 and 2 is 0

HM0 : F ∈ FM0 = {F ∈ F : µ1 = µ2 = 0}

Joshua D. Habiger P-Values for Multiple Testing Procedures
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Size Valid Decision Processes

To test Hm0 : F ∈ Fm0 with data X ∈ X , we have
compound decision function δm(X ; ηm) with
compound decision process

∆m = {δm(X ; ηm) : ηm ∈ [0, 1]}

We have Multiple Decision Process
∆ = (∆m, m ∈ M)

Definition : ∆m is Fm0-size valid if

sup
F∈Fm0

EF [δm(X ; ηm)] = ηm
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Uniform P-Value Statistics

Definition : The P-value statistic generated by ∆m is
defined via

P∆m(X ) = inf {ηm ∈ [0, 1] : δm(X ; ηm) = 1}

Definition : P∆m(X ) is Fm0-uniform if

sup
F∈Fm0

Pr
F

(P∆m(X ) ≤ t) = t

for every t ∈ [0, 1].

Theorem : P∆m(X ) is Fm0-uniform iff ∆m is Fm0-valid
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Independent P-value Statistic

Definition : P∆(X ) = (P∆m(X ), m ∈ M) is
FM0-independent if for t ∈ [0, 1]M and F ∈ FM0,

Pr
F

(

⋂

m∈M

[P∆m(X ) ≤ tm]

)

= Pr
F

(

⋂

m∈M1

[P∆m(X ) ≤ tm]

)

∏

m∈M0

Pr
F

(P∆m(X ) ≤ tm)

Question: When will an MDP generate
FM0-independent P-value statistics?
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Independence Theorem

Definition: ∆ is FM0-independent if for d ∈ {0, 1}M ,
η ∈ [0, 1]M , and every F ∈ FM0,

Pr
F

(

⋂

m∈M

[δm(X ; ηm) = dm]

)

= Pr
F

(

⋂

m∈M1

[δm(X ; ηm) = dm]

)

∏

m∈M0

Pr
F

(δm(X ; ηm) = dm)

Theorem: P∆(X ) is FM0-independent iff ∆ is FM0

independent
Proof follows by showing I(P∆m (X) ≤ tm) = δm(X ; tm) a.e. [F] ∀F
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How can we define FM0-independent and
valid compound decision processes?
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The Idea

Consider testing

Hm0 : Xm ∼ N(0, 1) vs. H1m : Xm ∼ N(µm, 1), µm 6= 0

The standard decision function is defined

δm(Xm; .05) = I(Xm ≤ −1.96) + I(Xm ≥ 1.96)

Why not δm(Xm; .05) = I(Xm ≥ 1.645)?
If µm > 0, NP test!

We will split X = (X [, T ], X [, T̄ ]) and use X [, T ] to
estimate µm and X [m, T̄ ] to test Hm0
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The Decision Function

Consider compound decision functions
δm : X → {0, 1} defined

δm(X [, T ], X [m, T̄ ]; η)

where T ⊂ N and T̄ = N \ T
Ex. T = {1, 2}, and δ1(X [, T ], X [1, T̄ ]; η)

X 11 X 12 X 13 ... X 1N

X 21 X 22 X23 ... X2N
...

...
...

. . .
...

X M1 X M2 XM3 ... XMN

Joshua D. Habiger P-Values for Multiple Testing Procedures
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The Example

Suppose X [, n]
i .i .d∼ F ∈ F =

{

MVN
(

1
N µ, 1

N I
)}

Hm0 : µm = 0, F ∈ F vs. Hm1 : µm 6= 0, F ∈ F
Considering M sufficient statistics for training data
-
∑

n∈T X [, n] - and test data -
∑

n∈T̄ X [, n]

X ≡
∑

n∈N

X [, n]

=
∑

n∈T

X [, n] +
∑

n∈T̄

X [, n]

≡ Y + Z
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The Example Cont.









X1

X2
...

XM









split→









Y1 Z1

Y2 Z2
...

...
YM ZM









X ∼ MVN(µ, I).
Y ∼ MVN(λ2µ, λ2I) and
Z ∼ MVN((1 − λ2)µ, (1 − λ2)I)

λ2 = |T |
N is proportion of training data
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Simple and Compound Decision Functions

1 δ
(1)
m (Ym, Zm; η) ≡ δ

(1)
m (Xm; η) - Simple

2 δ
(2)
m (Y , Zm; η) - Compound

Ex. δ
(1)
1 (Y1, Z1; η) vs. δ

(2)
1 (Y , Z1; η)









Y 1 Z 1

Y2 Z2
...

...
YM ZM









vs.









Y 1 Z 1

Y 2 Z2
...

...
Y M ZM








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Evaluating MDPs

∆(1) and ∆(2) should each be FM0-size valid (and
independent)

Want to maximize power

β(1)(µ, η) =
∑

m∈M1

β
(1)
m (µm, η)

M1
≡
∑

m∈M1

Eµm [δ
(1)
m (Xm; η)]

M1

β(2)(µ, λ2, η) =
∑

m∈M1

β
(2)
m (µ, λ2, η)

M1
≡
∑

m∈M1

Eµ[δ
(2)
m (Y , Zm; η)]

M1
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Gold Standard Decision Function

δ
(1)
m (Xm; η) = I(Xm ≤ lm(η)) + I(Xm ≥ um(η))

If lm(η) = Φ−1(η/2) and um(η) = Φ−1(1 − η/2), then

Eµm=0[δ
(1)
m (Xm; η)] = η

Ex. l(.1) = −1.645 and u(.1) = 1.645
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Oracle Decision Function

How would an Oracle, who knew µm, choose lm(η)
and um(η)?

1 Constraint: Need to choose lm(η) and um(η) s.t.

Eµm=0[δ
(1)
m (Xm; η)] = η

2 Maximize βm(µm, η)
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Oracle Cutoffs

Constraint corresponds to hm ∈ [0, 1] for
l(η, hm) = Φ−1(hmη)
u(η, hm) = Φ−1(1 − [1 − hm ]η)

For

δ
(1)
m (Xm; η, hm) = I(Xm ≤ l(η, hm)) + I(Xm ≥ u(η, hm)),

β
(1)
m (µm, η, hm) = Φ(µm−l(η, hm))+1−Φ(µm−u(η, hm))

is maximized by choosing

hm(µm) =

{

1 if µm < 0 (lower tailed test)
0 if µm > 0 (upper tailed test)
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Estimating the Oracle Cutoffs

Theorem : Suppose that ((Ym, Zm); m ∈ M0) are
independent and also independent of ((Ym, Zm); m ∈ M1).
If for every m ∈ M0,

EF [δm(Y , Zm; ηm)|Y ] = ηm

for every F ∈ Fm0, then ∆ is FM0-size valid and hence,
P∆(Y , Z ) is FM0-uniform and independent.

Intuition: δm only depends on Zm under Hm0 and Zms are
independent! Also, δm is size valid.
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Estimating the Oracle Cutoffs Cont.

Estimate hm(µm) = I(µm < 0) with hm(Y ) ∈ [0, 1]

δ
(2)
m (Y , Zm; η) =

I
(

Zm√
1 − λ2

≤ l(hm(Y ), η)

)

+ I
(

Zm√
1 − λ2

≥ um(hm(Y ), η)

)

Corollary: ∆(2) is FM0-size-valid and independent for
any M0. Hence P∆(2) is FM0-uniform and independent
for any M0.

Intuition: The tail area is η for any hm(Y ) ∈ [0, 1]
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Estimating the Oracle Cutoffs Cont.

How will we estimate hm(µm) = I(µm < 0) with hm(Y )?
Route: Use Empirical Bayes methods to develop
shrinkage estimators

1 Specify prior for µm:

G(µm; θ, τ) = Φ

(

µm − θ

τ

)

2 Compute hm(Ym, θ, τ) = Pr(µm < 0; Ym, θ, τ)

3 Plug in MOM estimates θ̂(Y ) and τ̂ (Y )
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Performance: Train Prop. = .001
β(2)(µ,λ2,.05/5000)

β(1)(µ,.05/5000)

µm vs. hm(Y ) : θ = τ = 2 .4 .7 .9 1.1 1.3 1.6
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Performance: Train Prop. = .01
β(2)(µ,λ2,.05/5000)

β(1)(µ,.05/5000)

µm vs. hm(Y ) : θ = τ = 2 .4 .7 .9 1.1 1.3 1.6
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Performance: Train Prop. = .02
β(2)(µ,λ2,.05/5000)

β(1)(µ,.05/5000)

µm vs. hm(Y ) : θ = τ = 2 .4 .7 .9 1.1 1.3 1.6

−4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mu

E
(h

(y
))

oracle
h(y)
h=1/2

0.0 0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

theta

ta
u

0.0 0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

theta

ta
u

5000 µ s are quantiles from N(θ, τ2)
Joshua D. Habiger P-Values for Multiple Testing Procedures



Motivation
Randomized P-Value Statistics for MTPs

Compound P-value Statistics for MTPs
Concluding Remarks

Setup and Results
Sample Splitting
Application

Performance: Train Prop. = .05
β(2)(µ,λ2,.05/5000)

β(1)(µ,.05/5000)

µm vs. hm(Y ) : θ = τ = 2 .4 .7 .9 1.1 1.3 1.6
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Performance: Train Prop. = .1
β(2)(µ,λ2,.05/5000)

β(1)(µ,.05/5000)

µm vs. hm(Y ) : θ = τ = 2 .4 .7 .9 1.1 1.3 1.6
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Performance: Train Prop. = .2
β(2)(µ,λ2,.05/5000)

β(1)(µ,.05/5000)

µm vs. hm(Y ) : θ = τ = 2 .4 .7 .9 1.1 1.3 1.6
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Splitting the sample

Choice of λ2

Larger λ2 allows for better estimates of hm(µm) but we have
less test data
Smaller λ2 yields worse estimates of hm(µm) but we have
more test data
We should choose .01 < λ2 < .05

Caveats
If average signal is θ = 0, simple δm is more powerful
Loss in power when θ = 0 is small relative to gain in power
when θ 6= 0.
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Prostate Cancer Data

control group cancer group
x [, 1] x [, 2] ... x [, 50] x [, 51] x [, 52] ... x [, 102]

x [1, ] -.931 -.840 ... 3.81 -1.12 1.01 ... -.001
x [2, ] -1.07 -.880 ... -.477 -.571 -.811 ... -.836

...
...

...
. . .

...
...

...
. . .

...
x [6033, ] -.754 -.708 ... -.011 .457 .578 ... -.162
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Application to BH and Sidak
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Some Remarks

We allow for MTPs to depend upon compound
P-values so the behave in a more efficient manner

Sample splitting approach allows for MTPs to be
valid, contrary to the double dipping approach in Sun
and Cai [2007], Efron [2001,2004,2007,...]

May be possible to use training data more efficiently.
Choice of λ2 will depend on hm(Y )
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What have we done?

There are many P-value based multiple testing
procedures for controlling many different error rates
Stochastic process approach allows for (possibly
compound) P-values satisfying conditions allowing for
valid MTPs

Robust
Efficient

Methods can be broadly used to improve any P-Value
based MTP
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Future Work

Can use sample splitting approach in other Oracle
procedures - Peña et. al.
Investigate other hm(Y )

Bayesian rather than Empirical Bayesian approach
(specify G(µm) and study robustness)
Simultaneous conf. intervals. For θ a parameter, the
1 − α interval is A(X ) = {θ ∈ Θ : P(X |θ) ≥ α}
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Another Procedure

Use all data to satisfy uniformity condition?
Some Error rates - mFDR, EFP - don’t require
independence

Let h1(X ) = g(X2, X3, ..., XM), h2(X ) = g(X1, X3, ..., XM), ...

δ1(X ; ηm) = I
(

X1 ≤ Φ−1(h1(X )η)
)

+ I
(

X1 ≥ Φ−1(1 − [1 − h1(X )]ηm)
)

δ2(X ; ηm) = I
(

X2 ≤ Φ−1(h2(X )η)
)

+ I
(

X2 ≥ Φ−1(1 − [1 − h2(X )]ηm)
)

...
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Another Procedure

We chose |T | = |T1
⋃

T2| = 4 in example
Consider (unbiased) power estimate

β̂m =
1

(50
2

)(52
2

)

∑

T :|T1|=|T2|=2

δm(x [, T ], x [m, T̄ ])

Can simply report β̂ms or even define
δ∗m = I(Um ≤ β̂m) if you dare.
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