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Motivation A Quick Analysis

Problems with analysis
Multiple Testing Procedures

Timmons et. al [2007] data

@ Xxmj = brown fat cell expression measurement for gene m on jth
microarray

@ vy = white fat cell expression measurement for gene m on kth

microarray

m Xm1 Xm2 Xms5 Ym1 Ym2 Yms

1 122 1.66 2.33 5.64 1.79 4.05

2 3.57 19.22 11.89 | 5.17 29.49 11.26
12488 | 2.52 10.91 22.67 | 10.70 7.35 12.81

Goal: compare brown fat cell measurements to white for each
gene
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Motivation

A Quick Analysis

Boxplots for 5 genes

gene 1 gene 2 gene 3 gene 4 gene 5




Motivation A Quick Analysis

Problems with analysis
Multiple Testing P:

Model and Hypotheses

@ Model: .
ii.d.
Xm17Xm27---aXm5 ~ Fm(')

i.i.d.
le; Ym2; ceey Ym8 I I’\’ Fm( - om)
@ Hypotheses:
Hmo : fm = 0,Fm € FNORM vs. Hop < 6 # 0, Fy € FNORM
@ 6 = 0 means genen, not differentially expressed

@ O # 0 means geney, is differentially expressed
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Motivation A Quick Analysis

Problems with analysis
Multiple Testing Procedures

Decision Functions

@ Test statistics

Pro (Xm, Y ) = 2[1 = Tia (IT (X, Y ) )]

@ Decision Function

5P(Xm7ym;05) =1 (PTm(vaym) < O‘)
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Motivation A Quick Analysis

Problems with analysis
Multiple Testing Procedures

Testing with P-values
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a = .05 allows for 2879 “DISCOVERIES”.!!!
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Motivation
A Quick Analysis

Problems with analysis
Multiple Testing Procedures

A closer look

@ All Hpo true => expect 624 False Discoveries!

@ Consequences
o Time (and grant money!?!) wasted

@ Solutions: Control global error rate
@ FWER = Pr(#FD > 1)
_ #FD
® FDR = E | w07 ]
@ ... and many more
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Motivation
A Quick Analysis

Problems with analysis
Multiple Testing Procedures

P-Value based MTPs

o Let P = (Py,P,,...,Py) be P-values for testing
H107 H207 LR HMO

@ Define a P-value based MTP by
é:[0,1]" — {0,1}"
where §(P) = (01(P), 52(P), ..., om(P))
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Motivation
A Quick Analysis

Problems with analysis
Multiple Testing Procedures

Examples

@ Let Py < P < ... <P be ordered P-values

@ Sequential Sidak (Duduit and van der Laan [2008])
o m(P;a) = I (Pm <1-(1-— a)m—++1), where

kzk(P):max{m:P(j) <1—(1-a)™m, Y gm}
@ Benjamini and Hochberg (1995)
@ om(P; @) =I(Pm < ka/M), where
k=k(P)= max{j 1Py < Jma}
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Motivation
A Quick Analysis

Problems with analysis
Multiple Testing Procedures

Application of MTPs: o = .05
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Motivation
A Quick Analysis

Problems with analysis
Multiple Testing Procedures

Problems/Questions

@ The fine print

@ Uniformity condition
@ Independence condition

@ T-test P-values/ Nonparametric rank based P-values
and the fine print
@ Questions
@ Could we define more robust P-value statistics
satisfying the conditions? (relax normality assumption)

@ Could we define more efficient P-value statistics
satisfying the conditions?
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Randomized P-Value Statistics for MTPs

Example

Application to MTPs

Randomized P-value Statistics for MTPs
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Randomized P-Value Statistics for MTPs
Example
Application to MTPs

The Idea

@ Use randomization to allow for nonparametric discrete
P-values to be continuous

@ Then P-values will satisfy uniformity condition and
inherit robust properties
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Setup

Randomized P-Value Statistics for MTPs Result
Example
Application to MTPs

Data description

@ Assume X ~ F, let F be a model for F and let
U ~ [0, 1] be independent of X.

@ Let Fy be null sub-model for F under Hg. i.e.
Ho : F € Fy and F; an alternative sub-model

@ Model example in this section
® X1, Xz, s Xn, E() and Y1, Ya, ..., Yo, T F (- — 6) with
F = {all continuous d.f.s}

@ Fo={FeF:0>0}and F, = {F € F:0 <0}
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Setup

Randomized P-Value Statistics for MTPs Result
Example
Application to MTPs

Valid Decision Processes

@ Decision function §(x,u; n) € {0,1} where 6 = 1(0)
means reject(accept) Ho

@ Allowing size index 7 to vary, we form decision
process
A ={0(X,U;n) :n € [0,1]}

(also assume t — §(x, u; t) nondecreasing and right cont. a.e.
[FIVF € F)

Definition : The decision process A is F,-size-valid if
SUPr <7, Ece uyl0(X, Ui n)] = 1 for every n € [0,1].
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Setup
Randomized P-Value Statistics for MTPs Result

Example
Application to MTPs

Uniform P-Value Statistics

Pa(X,U) =inf{n €[0,1] : 6(X,U;n) =1}

Definition : The P-value statistic PA(X,U) is
Fo-uniform if

sup Pre uy[Pa(X,U) <t] =t
FeFo

forevery t € [0, 1].
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Setup

Randomized P-Value Statistics for MTPs [RE¢
Example
Application to MTPs

Valid vs. Uniform

Theorem : P,(X,U) is Fo-uniform if and only if A is
Fo-Size-valid.

Proof: Show [PA(X,U) <t]=[0(X,U;t) =1] a.e
[FIVF € F

@ Use: We can usually define ¢(x;n) € [0, 1] so that
SUPEc 7, Er[o(x;n)] = n.

@ Then define §(X,U;n) =1(U < ¢(X;n)) and get Pa
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Setup

Randomized P-Value Statistics for MTPs Result
Example

Application to MTPs

Randomized Wilcoxon test function

@ Randomized Wilcoxon test function:

1 if W(x,y) < k(n)
dwr(X,y;m) =< () FW(x,y)=k(n)
0 ifW(x,y) > k(n)

@ k(n), v(n) are chosen s.t. supgc 7 Er[p(X,y;n)] =7
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Setup
Randomized P-Value Statistics for MTPs Result

Example

Application to MTPs

Randomize Wilcoxon P-value

@ Decision function:
dwr (X, Y, U;in) =1u < gw(x,y;n)]
=1{W(x,y) <k(n)]+u <~(m)IW(x,y)=k(n)]

@ P-value for Ayr is
Pawe (X, Y, U;n) =inf{n € [0,1] : ow(x,y,u;n) =1}

= Whpno[W (X,y) — 1] + uwp, n, [W (X, y)]
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Setup
Randomized P-Value Statistics for MTPs Result
Example

Application to MTPs

P -value distribution: F=Normal

@ 50,000 sets of Xy, .., Xs, Y1, ..., Ys '~ F(-) are
generated and Wilcoxon, randomized Wilcoxon, and

T -test P-values are computed.

normal

00 02 04 06 08 10

[
00 02 04 06 08 10
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Setup
Randomized P-Value Statistics for MTPs Result
Example

Application to MTPs

P-value distribution: F=Cauchy

o 50,000 sets of X1, .., Xs, Y1, ..., Ys S F () are

generated and Wilcoxon, randomized Wilcoxon, and
T -test P-values are computed.

cauchy
« 3
3 ©
z o o s
g 2
8 <
3 3 3
00 0z 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
T-test Wil Randomized Wilcoxon
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Randomized P-Value Statistics for MTPs
mple

Application to MTPs

BH Procedure for F = normal

@ Same data except now 0; = ... = g0 = 0 and
fgo1 = ... = f1000 = 2
@ BH procedure applied at « using P-values from T, Wilcoxon, and

Randomized Wilcoxon tests.
normal
g A 2 10,’2
o , 9 o
m At " o
z © A-A/ '% § ~ .tfi'A
[aXEN] 3 LA
LS 49 3 %7
a # a 2 -;/,§
o N .+'/A
g N o &g
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Randomized P-Value Statistics for MTPs
mple

Application to MTPs

BH Procedure for F = Cauchy

@ Same data except now 0; = ... = g0 = 0 and
901 = ... = f1000 = 2

@ BH procedure applied at « using P-values from T, Wilcoxon, and
Randomized Wilcoxon tests.

cauchy
o
5 s . /A
A s | /ot
o | A o A /°
o o ,A’ .% i O,A/
S g A
e o
T 3 n’ 8 8 o7A
A” a ﬁA,
= ] ) A
- : +.+~+'+'+ &1 A&
2 4 A+t o Jdea® 4 + + ++++H
T T T T T T T T T T T T
00 01 02 03 04 05 00 01 02 03 04 05
alpha alpha
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Randomized P-Value Statistics for MTPs
Example
Application to MTPs

Some Remarks

@ Randomized Wilcoxon P-value allows for valid
MTPs so long as F continuous

o T-test P-values only valid for normal model
@ Nonrandomized Wilcoxon P-values are never Uniform

@ What about efficiency?
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Setup and Results
Sample Splitting
Application

Compound P-value Statistics for MTPs

Compound P-Value Statistics for MTPs
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs
Application

The idea

@ So far each P-value is simple
o i.e. if Xi is data for testing Hmo, then Pa,, (Xm)

@ What about compound P-value statistics?
o i.e. for X = (Xq, Xy, ..., Xu), compute Pa,, (X)

@ How can we define compound P-value statistics and
ensure uniform and independence conditions
satisfied?
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs
Application

Data Description

o LetX e ¥Y¥and X ~ F.

Xi1 Xz .. XN

X X .. X
% — .21 .22 | .2N

Xvi Xmz - Xun

e ForACM={1,2 .. M} BCN={12 . N}
denote by

X[A,B] = (Xmn :m €A, n€B)

@ We write X[m,] = X[{m}, ] to refer to a row m and
X[, n] for column n
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

Model

@ Model: X ~F ¢ F

@ Example for this section - N microarrays are i.i.d.
according to an M-dimensional multivariate normal
distribution

F ={F : F(x HGX[ n]),G = MVN(um, Zmxm)}
neN

@ Sub-models: Fno € F and Fr1 C F

o Ex. mean expression level for gene mis 0. i.e.

Fmo={F € F: um =0}
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

Hypotheses

@ Hypotheses
Hno : F € FoVS. Hnt - F € Frna
@ Global null model/hypothesis: For My C M,
Hao i F € Fay = NmemyFmo
@ Ex. mean expression level for genes 1 and 2is 0

Huo: F € Fro={F € F:pn = p2 = 0}
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs
Application

Size Valid Decision Processes

@ Totest Hyo : F € Fio With data X € X', we have
compound decision function oy, (X; 7m) with
compound decision process

Am = {6m(X;7m) : mm € [0, 1]}

@ We have Multiple Decision Process
A =(Am,me M)

Definition : A, is Fmo-size valid if

sup Eg [0m(X; 1m)] = 7m
FeFmo
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

Uniform P-Value Statistics

Definition : The P-value statistic generated by A, is
defined via

Pa,(X) =inf{nm € [0,1] : 0m(X; nm) = 1}
Definition : P,_(X) is Fmo-uniform if

sup Pr(Pa,(X) <t) =t

r
FeFmo F

for every t € [0, 1].
Theorem : P, (X) is Fro-uniform iff A, is Fo-valid
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

Independent P-value Statistic

Definition : Pa(X) = (Pa,(X),m € M) is
Fuo-independent if fort € [0, 1]M and F € Fpqo,

Pr ( M Pan(X) < tm])

meM

= F;r < ﬂ [Pan(X) < tm]) H Iir(PAm(X) < tm)

meM; meM,

@ Question: When will an MDP generate
Fmo-independent P-value statistics?
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

Independence Theorem

Definition: A is Fyo-independent if for d € {0,1}M,
n € [0,1]™, and every F € F o,

(ﬂ [0 (X 1m _dm]> 11 Pr (dm(X; 71m) = dim)

meM; meMo

Theorem: Pa(X)is Fap-independent iff A is Fao
independent
Proof follows by showing |(Pa,,(X) <tm) = dm(X;tm) a.e. [F] VF
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

How can we define Fy-independent and
valid compound decision processes?
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs
Application

The Idea

@ Consider testing
Hmo : Xm ~ N(0O,1) vs. Him : Xm ~ N(m, 1), um # 0
@ The standard decision function is defined
6m(Xm; -05) = I(Xm < —1.96) + (X > 1.96)

o If um > 0, NP test!
@ We will split X = (X[, T], X[, T]) and use X[, T] to
estimate pm, and X[m, T] to test Hyo
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

The Decision Function

@ Consider compound decision functions
dm : X — {0,1} defined

Sm(X[, T1,X[m,T];n)

where T c Nand T =N\ T
o Ex. T = {1,2}, and &;(X[, T],X[1, T]; n)

Xll X12 X13 oo XlN ‘
X21 X22 X23 X2N

Xvr Xmz | Xmz ... Xun
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs
Application

The Example

e Suppose X[,n] "~ F e F = {MVN (3, 11)}
@ Huo:pm=0,F € Fvs. Hn1 : ym #0,F € F

@ Considering M sufficient statistics for training data
-> ner X[,n] -and test data - )+ X[, n]

X = Y X[n]

neN

= > X[n]+> X[n]
neT neT

= Y +Z
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

The Example Cont.

X1 Y. Z;
Xo | split | Y2 22
. H . .
Xm Yv Zm

® X ~ MVN(g, I).
@ Y ~ MVN(A2u, \?l) and
Z ~MVN((1 = X2)p, (1 — A2)I)

0\ = % is proportion of training data
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Setup and Results
Compound P-value Statistics for MTPs SEmpE $p|lttlng
Application

Simple and Compound Decision Functions

(% ) (5,(]~,1)(Ym,Zm; n) = (5,(nl)(Xm;77) - Simple
@ 47(Y.Zn; 1) - Compound

o Ex. 0M(Yq,Zy;n) vs. 0P (Y, 2 n)

Y1 Z4 Y1 Z1
Y2 Z; Yo Z;
. . VS. . .
YM ZM Y M ZM
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

Evaluating MDPs

o AM and A® should each be Fy-size valid (and
independent)

@ Want to maximize power

(1) (1) :
(1) _ Z B’ (km, 1) _ 2 : Epin [0m” (Xmi )]
ﬁ (IJ’777) M]_ - M]_
meM; meM;

6’(2)(;1 A2 n) E [(5(2)(Y.Z )]
3(2) 2 N ~m )N _ wl[Om y &ms
B, A% n) = E — T = § Ve

meM; meM;
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

Gold Standard Decision Function

35 Xemi 1) = 1 (X < In(1)) + 1(Xm > U (1))

o Ifln(n) = 7 1(n/2) and uyn(n) = -1(1 — n/2), then

En—o[0%) (Xm: m)] = 71

@ Ex. I(.1) = —1.645and u(.1) = 1.645
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

Oracle Decision Function

@ How would an Oracle, who knew pm, choose I, (n)
and un(n)?

© Constraint: Need to choose I (1) and up(n) s.t.

Epum—old%) (Xmi m)] =1

@ Maximize B (ium, 1)
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

aint

i
=}

f(x)
0.2
Il

0.1

0.0

—4 -2 0 2 4

o Tail areais .1

shua D. Habiger



Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

Oracle Cutoffs

@ Constraint corresponds to h,, € [0, 1] for

° I(n,hm) = ®~*(hmn)
° u(n,hm) =041 ~[1-hnln)

o For

0 Xmim, him) = 1(Xem < 1(m, hiw)) + 11X > u (17, M),

& (s 1, M) = (ptm =11, Din))+ L= S (pam —u (1, i)
is maximized by choosing

i (ptm) = 1 ifum <0 (lower tailed test)
miHm) =90 if um >0 (upper tailed test)
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs i
Application

Estimating the Oracle Cutoffs

Theorem : Suppose that ((Ym, Zn);m € M) are
independent and also independent of ((Ym,Zm); m € M,).
If for every m € Mo,

Er [5m(YaZm;77m)‘Y] = Tlm

for every F € Fmno, then A is F,o-size valid and hence,
Pa(Y,Z)is Frpo-uniform and independent.

Intuition: &y, only depends on Z,, under Hyo and Z,s are
independent! Also, dy, is size valid.
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs S
Application

Estimating the Oracle Cutoffs Cont.

o Estimate hp,(1m) = I(m < 0) with hy(Y) € [0, 1]
o (Y Zmi 1)) =

| <¢% < I(hm(Y),n)> +1 <\/% > um(hm(Y)w)>

Corollary: A®) is Fyo-size-valid and independent for
any My. Hence P, is Fo-uniform and independent
for any M.

@ Intuition: The tail area is » for any h,(Y) € [0, 1]
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs
Application

Estimating the Oracle Cutoffs Cont.

@ How will we estimate hy(um) = [(um < 0) with hy(Y)?

@ Route: Use Empirical Bayes methods to develop
shrinkage estimators

© Specify prior for pum:

G(im: 0,7) = ® <NmTo)

© Plug in MOM estimates A(Y ) and 7(Y)
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs
Application

Performance: Train Prop. = .001

53 (1,)\2,.05/5000)
3@ (p,.05/5000)
34— — oracle 2 -
= - hy)
- = h=1/2
E | s z . |
-4 -2 0 2 4 6 8 0.0 0.5 1.0 15 20
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E(h(y))

Compound P-value Statistics for MTPs

Setup and Results
Sample Splitting
Application

Performance: Train Prop. = .01

pm VS. hn(Y):0=7=2
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Compound P-value Statistics for MTPs

Setup and Results
Sample Splitting
Application

Performance: Train Prop. = .02

pm VS. hn(Y):0=7=2
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E(h(y))

Compound P-value Statistics for MTPs

Setup and Results
Sample Splitting
Application

Performance: Train Prop. = .05
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs
Application

Performance: Train Prop. = .1
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Compound P-value Statistics for MTPs

Performance: Train Prop.
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Setup and Results
Sample Splitting
Application
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Setup and Results
Sample Splitting

Compound P-value Statistics for MTPs
Application

Splitting the sample

@ Choice of \2
o Larger \? allows for better estimates of hy,(um) but we have

less test data
@ Smaller \? yields worse estimates of hy,(um) but we have

more test data
@ We should choose .01 < \? < .05
@ Caveats
o If average signal is § = 0, simple 6, is more powerful
o Loss in power when 6 = 0 is small relative to gain in power
when 6 # 0.
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Prostate Cancer Data

control group cancer group
x[,1] x[,2] .. x[,50] | x[,51] x[,52] .. x[,102]
X[1,] -931 -840 .. 381 | -1.12 101 .. -001
x[2,] |-1.07 -80 .. -477 | -571 -811 .. -.836
x[6033,] | -.754 -708 .. -011 | .457 578 .. -162
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Application to BH and Sidak

Sequential Sidak FWER method

B FF FFFFFFAEAEESE S EES
0
g o7
o -
3 <
2 ©°
8 4
Stasasananranasan . :
0.05 0.10 0.15 0.20
alpha
BH FDR method
0 FF FFFFFF
0 < -
o
?gmA A AAA
8« A AAAA
0
R ++ 4+ ++++ +
oc-laasaprrrnrsnAA . :
0.05 0.10 0.15 0.20
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Some Remarks

@ We allow for MTPs to depend upon compound
P-values so the behave in a more efficient manner

@ Sample splitting approach allows for MTPs to be
valid, contrary to the double dipping approach in Sun
and Cai [2007], Efron [2001,2004,2007,...]

@ May be possible to use training data more efficiently.
Choice of \? will depend on hy,(Y)
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Concluding Remarks

What have we done?

@ There are many P-value based multiple testing
procedures for controlling many different error rates

@ Stochastic process approach allows for (possibly
compound) P-values satisfying conditions allowing for
valid MTPs

@ Robust
o Efficient

@ Methods can be broadly used to improve any P-Value
based MTP
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Concluding Remarks

Future Work

@ Can use sample splitting approach in other Oracle
procedures - Pefia et. al.

@ Investigate other hy,(Y)

@ Bayesian rather than Empirical Bayesian approach
(specify G(um) and study robustness)

@ Simultaneous conf. intervals. For 6 a parameter, the
1 — «interval is A(X) = {0 € © : P(X]0) > a}
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Concluding Remarks

Another Procedure

@ Use all data to satisfy uniformity condition?

@ Some Error rates - mFDR, EFP - don’t require
independence

Let hl(X) = g(X27X3, ...,XM), hz(X) = g(Xl,Xg, ...,XM),
01(X;mm) =1 (X2 < @7 (hi(X)n)) +1 (X1 = 741 — [1 — ha(X)]im))

62(X;mm) =1 (Xz < @7 H(h2(X)m)) +1 (X2 = ®7H(21 ~ [1 — ha(X)]m))

Joshua D. Habiger P-Values for Multiple Testing Procedures



Concluding Remarks

Another Procedure

@ We chose |T| = [T, |JT.| = 4 in example
@ Consider (unbiased) power estimate

~ 1 )
ﬁm: 50\ (52 5m ’T’ ,T
=D, 2 elTxm T

@ Can simply report Bms or even define
5 =1(Un < () if you dare.
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